Use of Doubled Haploids and Molecular Marker Assisted Selection to Expedite Breeding Processes in Maize

Abigail Pepin World Food Prize Foundation 2013 Borlaug-Ruan Internship

Centro Internacional de Mejoramiento de Maíz y Trigo

Acknowledgements	3
1 - Introduction	
1.1 Personal Remarks	4
1.2 History of CIMMYT	4
1.3 CIMMYT's Global Maize Program (GMP)	5
1.4 The People of CIMMYT	5
2 – Background	6
3 – Research	
Germination Trials.	7
Molecular Markers in Individual Haploid Kernel Selection	11
4 – Regional and Cultural Experiences	18
Citations	20
Pictures	21
Appendices	22

Table of Contents

Acknowledgements

I wish to send out my gratitude to all of the people who made my stay in El Batán, México possible. I wish to thank all of the people of CIMMYT for making my internship more than just a summer job but rather a rewarding learning experience. All of their guidance and generosity has been greatly appreciated.

I wish to especially thank all of my mentors while I was here: Dr. Natalia Palacios Rojas, Dr. Vijay Chaikman, and Dr. Mike Olsen. I appreciate all of their time spent educating me on the properties of maize and answering all of my questions. I would like to thank them for making sure that I not only saw the lab while here in El Batán, but was also able to go into the field and gain more exposure to Mexican agriculture and culture. I wish to thank Daniela Flores Castillo and Norma Hernandez for their assistance in making sure that my stay went as smoothly as possible.

I would also like to send out my gratitude to the many people that have spent countless hours training me and assisting me in my research. I would like to thank Martha Hernandez for welcoming me into the Plant Genomics section of the biotechnology labs. I would also like to thank Rafael Venado and Alberto Vergara for all of his assistance in my research. Their dedication and enthusiasm for their work made my internship all-the-more meaningful.

I must send out my appreciation to all of the people in the World Food Prize Foundation that made my stay here in CIMMYT México possible. Thank you to Dr. Norman Borlaug, whose legacy still resonates in El Batán in all of the fields and buildings around campus. Dr. Borlaug's dedication to educating the youth and giving them the tools to help solve the food crisis around the world is inspiring. His memory will not be forgotten. Thank you to John Ruan and Ambassador Kenneth Quinn whose leadership and generosity made the Borlaug-Ruan Internship and the Iowa and Global Youth Institutes possible.

I will be forever indebted to Lisa Fleming who tended to my every need in México. She was always willing to answer my phone calls at early hours in the morning to answer any concerns that I may have had. I greatly appreciate all of the guidance and supervision that she has given me during my two months here. Without her assistance, my stay would not have gone nearly as well.

I will be eternally grateful to all of the people the wonderful friends that I have met here in CIMMYT México. They have bolstered my enthusiasm for solving the world food problems. Their support and friendship will never be forgotten.

1- Introduction

1.1 Personal Remarks

Unlike many of the other 2013 Borlaug-Ruan interns throughout the world, I grew up with limited exposure to agriculture. I was raised in Colorado Springs where the drought prevented much growth and fires ravaged all that was living. When I moved to West Des Moines, Iowa, I gained more knowledge about the importance of agriculture to sustaining not only our country, but also the world. I knew about irrigation and about the processes through which plants utilize photosynthesis to produce ATP; however, I never fully conceptualized all of the efforts that go into ensuring that the food that we find in the supermarkets is of good quality and appropriate nutrition. This all changed when I wrote a paper on combating soil erosion and depletion in Malawi for the first Iowa Youth Institute in 2012.

My experiences at the Iowa Youth Institute were inspiring. I had never seen people so dedicated and passionate about truly making a difference when it comes to solving food security. I was fortunate enough to advance to the Global Youth Institute in October of 2012 where I was able to meet people committed to making a difference such as World Food Prize Laureate Dr. Daniel Hillel. Talking not only with people from scientists and professors but also with students who shared similar desires to combat issues with food security was an enriching experience. The many speakers at the Global Youth Institute who had dedicated their lives to combating hunger captivated my attention. I had never seen such a group of people truly dedicated toward one purpose. It was these devoted people that pushed me to apply for Borlaug-Ruan Internship during my senior year. I was a high school student who wanted to learn and had an intense desire to make a difference.

After submitting my application to the World Food Prize, I waited anxiously to see if I would be selected for the internship. I was jumping up and down with joy when Lisa informed me that I would be interning at El Centro Internacional de Mejormiento de Maíz y Trigo (CIMMYT) in El Batán, México where Dr. Norman Borlaug once did his research. The Borlaug-Ruan internship has completely altered my perception of agriculture and has cultivated my passion for learning more about the ways that we can combat food insecurity throughout the world. CIMMYT has worked hard to ensure that the crops that they provide have good nutritional quality to combat malnutrition. The institution has made an inspiring number of advances to help farmers and malnourished people all around the globe. I am so fortunate as to be able to have spent two months of my life here among such dedicated professionals.

1.2 The History of El Centro Internacional de Mejormiento de Maíz y Trigo (CIMMYT)

CIMMYT has a long history of producing different varieties of wheat and maize to fend off starvation. The institution was begotten out of a pilot program created by the Mexican government and the Rockefeller Foundation dubbed the Office of Special Studies (OSS) that sponsored the research of The Cooperative Wheat Research and Production Program. The goal of the pilot program, dubbed the Office of Special Studies (OSS), was to increase Mexico's farm productivity. What the institute grew into was much more ("CIMMYT and Mexico").

During the 1940s, OSS committed research to plant breeding, entomology, agronomy, and genetics to help combat rust diseases that were plaguing the wheat varieties and causing shortages throughout Mexico. When Dr. Borlaug joined the OSS team in 1944, he worked with researchers to develop varieties of wheat that had resistance to the many rust diseases that were plaguing the country. By using introducing dwarf wheat varieties and using new growing techniques whereby wheat was grown in Obregón (in a hot, dry region of Mexico) and then shipped to Toluca (in a wet, cooler region of Mexico), Dr. Borlaug achieved an amazing amount of success in allowing the wheat to be able to sustain great environmental stress. Breeding dwarf plant varieties with tall wheat varieties resulted in more energy expenditure on creating seeds. Through his research, the wheat varieties become resistant to rust as well

as many environmental stresses. Collectively, this led to increased production of grain throughout Mexico. Researchers like Borlaug at OSS helped Mexico to achieve self-sufficiency by the 1950s. OSS began to expand to India and Pakistan where they helped to bring new record levels of harvests to the farmers. This was all under the pilot program ("CIMMYT and Mexico").

In 1960, Mexico established the National Institute for Agricultural Research that became responsible for conducting research on Mexican agriculture. In 1966, inspired by the success of the OSS program, the Rockefeller and Ford Foundation and the Mexican government funded the creation of what came to be known as CIMMYT, an international non-for-profit agricultural research institute based in Mexico. The Cooperative Wheat Research and Production Program had morphed into something much larger. Many developing countries that faced challenges of insufficiency of grain began to look at CIMMYT and Borlaug's new strains of wheat as the panacea to poverty, famine, and hunger within their countries. Consequently, CIMMYT began to spread rapidly.

Today, CIMMYT has developed into an international organization based in El Batán, México with centers in Turkey, India, China, Iran, Kazakhsan, Kenya, Zimbabwe, Colombia, Bangladesh, and Afghanistan. CIMMYT seed varieties are grown in over a hundred countries around the world, and CIMMYT has helped to train 10,000 researchers who are helping farmers throughout the world. CIMMYT has a strong history of research in both maize and wheat.

CIMMYT is active in attempting to improve food availability and security throughout the world. CIMMYT truly embodies their mission statement: "Through strong science and effective partnerships, we create, share, and use knowledge and technology to increase security, improve the productivity and profitability of farming systems, and sustain natural resources" ("CIMMYT Intellectual Privacy Policy"). This statement holds true in every project that CIMMYT researchers are working on. Here, amongst some of the greatest scientists in history, I have spent my two months.

1.3 CIMMYT's Global Maize Program (GMP)

Millions of people go hungry everyday; however, even many of those that have food suffer from nutrient deficiencies. Lack of and insufficiencies of substances such as vitamins and minerals can stunt growth and cause a myriad of serious disorders that will affect the world's population in many years. No longer is it sufficient to say that everyone must have something to eat; we need to ensure that people all around the world are getting adequate nutrition to be able to maintain a healthy life. Expansion of the world's population has resulted in an increased demand for food of desirable nutritional values.

CIMMYT's Maize Quality and Nutrition lab is dedicated to fulfilling such demands in maize through research and analysis. This is where I had the opportunity to work during my 2013 Borlaug-Ruan International Internship under the supervision of Dr. Natalia Palacios Rojas. The idea of combating malnourishment has always been of interest to me because it is of vital importance to ensure that people around the world are able to live life free from diseases caused by inadequate supply to food or poor micronutrient diversity.

1.4 The People of CIMMYT

During my two months here in CIMMYT Mexico, I had the privilege of working with some of the most dedicated scientists in the world. Being around such impassioned people who enjoyed doing what they do was one of the highlights of my trip.

My advisor, Dr. Natalia Palacios, was always there to guide me in whatever way necessary despite her busy schedule. She acted as a teacher and was always willing to provide relevant articles regarding what she was researching. She also answered any questions or concerns that I had. I have been encouraged by her dedication to her work and enthusiasm for coming into work every day.

I had the opportunity to work in the biotechnology laboratory where I worked with Martha Hernandez who assisted me in running tests for close to 50 SSR markers along the Y1 locus of interest. She ensured that I was exposed to a variety of different techniques around the laboratory from DNA extraction to seed

chipping to gel electrophoresis using both acrylamide gels and agarose gels. Rafael Venado offered much useful advice and helped to train me on various techniques in the laboratory. Alberto Vergara assisted me in extracting DNA and was always willing to answer my questions.

Dr. Vijaya Chaikman proved to be extremely helpful to me during my stay here in CIMMYT with my work with doubled haploids. As a researcher on doubled haploids, Dr. Chaikman taught me the principles through which he found the seeds and subsequently treated them. He also began directing my research with my germination trials, and always offered useful advice. Dr. Mike Olsen and Dr. Sudha Nair became my mentors on molecular markers and their applications to what Dr. Palacios's lab was attempting to accomplish with the crtRB1 allele for provitamin A.

The people at CIMMYT were more than willing to go out of their way to assist me in whatever way that I needed. They helped me to understand the role of researchers in the GMP program beyond just my project; consequently, I was exposed to a variety of different projects for training.

2 – Background

Pedigree breeding is a technique that plant-breeders employ during inbreeding of populations to develop homozygous lines with favorable traits. The plants with the favorable allele are selected for and breed in each successive generation until a homozygous line with such an allele is developed. This technique is highly used because unfavorable genotypes can be eliminated before lines are evaluated. Single-seed descent is another method to minimize genetic drift. An individual seed is taken from each plant to inbreed the population before testing; however, this method often takes longer. Still another breeding method to developing homozygous lines is to use a doubled haploid breeding scheme.

CIMMYT is looking to use molecular markers to select for haploid kernels from induced F1 plants. This would allow the researchers to save a generation in breeding. However, there are two primary obstacles to achieving this goal. The restraints include the viability of seed-chipped doubled haploid kernels over the time needed to extract DNA and analyze samples and also the ability to identify markers to differentiate between the favorable haplotype from unfavorable alleles from the population and the DH inducer allele. My project collectively is an attempt to explore the feasibility of individual haploid kernel selection through investigation of its constraints. This project has two separate components: investigating the viability of chipped haploid seeds and researching whether it is possible to differentiate between the favorable allele from the inducer line and parents.

Through the investigation, CIMMYT will better optimize its deployment strategies of molecular markers in biofortification efforts in the Maize Quality and Nutrition Lab. Biofortification is the tool through which food crops (in this case maize) are breed to increase their micronutrients. Close to 190 million children and 19 million pregnant women suffer from vitamin A deficiencies (K. Pixley). As a result, many of these populations are suffering from morbidity and mortality. In order to combat such issues, CIMMYT's GMP team in the Maize Quality and Nutrition lab has been dedicated to the biofortification of maize with provitamin A carotenoids, which our bodies can convert into vitamin A. The lab has specifically been targeting the crtRB1 allele to increase the micronutrient density in maize kernels. Biofortification has become an important tool to prevent malnutrition throughout the world in recent years.

3 – Research

The broad objective of this study was to investigate the constraints against using markers to select for haploid kernels produced on induced F1 plants: haploid kernel viability and the ability to use molecular markers to distinguish the haplotype of interest.

The two main objectives this paper seeks to investigate are:

• To investigate the impacts on chipped haploids after several weeks of storage.

• To investigate the possibility of differentiating between haplotypes of interest from the unfavorable allele within the parent populations and the doubled haploid inducer lines.

In turn, CIMMYT will use this research to best optimize the deployment of molecular markers on large effect QTL or major genes.

3.1 Doubled Haploid Germination Trials

3.1.1 Introduction

Doubled haploid (DH) technology has become an increasingly important tool in recent years for breeders. Doubled haploid is a term given to haploid (n) cells that undergo spontaneous or artificially induced chromosome doubling. Doubled haploid lines are created through the induction of haploids through crossing of heterozygous plants with a DH inducer; identification of haploid kernels through a purple morphological marker in the endosperm and embryo; and chromosome doubling through colchicine treatment. This is a significant process because it can significantly accelerate breeding programs by reducing the amount of breeding cycles required to reach homozygosity. For example, from a heterozygous source population, a conventional inbred line would take approximately 6-8 generations to reach homozygosity while using doubled haploid technology it would take about 2-3 generations. (Prasanna et al.)

Besides the amount of time that it takes to develop a homozygous line, DH technology is also significant in that it helps to eliminate genetic drift during the inbreeding and selection process. Genetic drift can cause problems during generation testing schemes when even if a good F3 family is identified for a trait, random segregation can cause poorer performing F4 progeny. In order to avoid this, traditionally, breeders will minimize genetic drift on selection by delaying field testing until the progenies are inbred, a term that has come to be known as pedigree breeding. The drawback to using this method is that they take usually around a year longer than early generation testing. By comparison, DH technology allows breeders to have the same timeframe as early generation testing while minimizing the genetic drift. Breeders typically induce F1 because it saves a generation of selfing; hence, the timeframe is shorter and the breeder will minimize the genetic drift during inbreeding.

Further, haploids, by nature of their gene composition, offer researchers the opportunity to study mutations, gene-cytoplasmic and gene-environmental interactions (Georgiev). Each of these factors can be analyzed without influences from such factors as heterozygosity.

3.1.2 Hypotheses

The rate at which a root is growing, the germination rate, and the number of infected seeds (bacterial or fungal infection) are all factors determining a seed's viability. Heightened root growth will indicate viability while increased growth of fungus will represent decreased viability. By comparing the weekly data, determinations can be made on how the chipped seeds for several weeks will affect the viability of the maize plants. Hence, if these variables reflect weakened chipped doubled haploid seeds, then chipping will contribute to a loss of viability of doubled haploid seed in the long term.

3.1.3 Methodology

Seed chipping is a technique used commonly to extract tissue from the maize kernels. In this method, chipping scissors are taken at a 45° angle to the endosperm of the kernel. The tissue is cut into thin layers and put into plastic tubes in a 96-tube container using a funnel (**Figure 1**). Parafilm is used to cover the other tubes to prevent any

"jumping" of tissue. Exactly half of two populations (Population 1 and population 2) were chipped. The seeds were

Figure 1. Seed Chipping Technique

Figure 2. Formatting Bundle

separated into separate envelopes, each containing 48 seeds of chipped or 48 seeds of unchipped seeds. The envelops were then stored in a Cold Room at 4° in plastic bags.

Each week, a portion of the seeds was removed from the cold room (the amount of seeds depended on the number of bundles that needed to be run). Germination paper was cut at one of the corners and marked into four separate sections. The paper was moistened with bleach water (5 ml bleach water, 2.5 L distilled water). Two soaked germination papers were placed on top of each other aligning the cut corner. Using a temple, an equal number of seeds were placed into each Figure 3. Seeds on Bundle with Radicle Side Down marked quadrant (Figure 2). Seeds were

the paper (Figure 3). Another sheet of soaked germination paper was placed on top of the seeds with the corners aligned. The paper was rolled from the uncut end to the **Figure 4. Rolled Bundle** cut end and tied with two rubber bands, one at each end (Figure 4). The rolled bundle is put with the cut ends facing down in a plastic tub with the thin layer of bleach solution. The plastic tub is wrapped in aluminum foil to prevent any sunlight from reaching the seeds. The plastic tub is placed in the incubator at 28°C. The seeds are allowed to germinate for 72 hours. After that time span elapsed, the bundles were unrolled, and measurements on root length, number of seeds infected with fungus, and number of seeds germinated were taken. The bundles were rerolled and rubber bands were placed at either end. The bundles were placed, cut side down, into the tub with bleach water. Then, the tub was placed back into the incubator at 28°C for 24 hours. At 24 hours, the bundles were taken out of the incubator and taken to the greenhouses. There the seeds were placed into Styrofoam containers with sterilized soil (Figure 5). The seeds were subsequently watered.

placed embryo side touching the paper with the radicle side placed toward the cut end of

Figure 5. Seeds after Planting

Three different forms of these trials were run. The longest run trial consisted of placing untreated seeds all together. In one quadrant, chipped haploid seeds would be placed, and in the following quadrant, unchipped haploid seeds would be placed. In this way, the seeds would be alternating. For the next taco, the order was switched. Two tacos were run concurrently. The population used for these trials came from population 1 (see Figure 6).

Figure 6. Population 1

In another trial, all of the haploid seeds were treated with the mix to prevent fungus, shown in Appendix A. The same protocol was followed with alternating chipped vs. unchipped seeds. Two tacos of alternating order were run concurrently. The population used for these trials came from population 2 (see **Figure 7**).

In the final experiment, the chipped and unchipped haploid seeds from the same population were mixed. Half of the population was treated while the other half remained untreated. The treated vs. untreated populations then alternated in the quadrants. Two separate populations were tested for this trial: population 1 and population 2.

Figure 7. Population 2

3.1.4 Results

The results of this experiment show that over the time span, chipping did not have a significant impact on both populations for the three variables tested (i.e. percent germinated, percent infected with fungus, and average root length). While the differences between the two populations were significant, it cannot be determined if this is due to the treatment or the population as these two variables are confounded. The LSMeans between the two separate populations is significantly different which explains the significance between populations. Still, when examining the LSMeans, the means between the chipped and unchipped populations within the same population are essentially the same, indicating there is no significant difference across the three factors examined that would indicate reduced viability (see **Table 1.1-1.4**). Further, biostatistical analysis shows that the days after chipping when used as a covariant is significant. This seems reasonable as each week the conditions changed slightly as I improved with the technique. Even so, when examining Graphs 1.1-1.3, it can be determined that the chipped and nonchipped populations follow closely to each other between each week. For all graphs and tables, see **3.1.5 Tables and Figures**. For the complete Biostatistical Analysis Report, see Appendix D.

3.1.5 Tables and Figures

Graph 1.1 Percent Infected with Fungus. The green diamonds and the brown squares reflects data collected from population 1, while the orange triangles and the green x's reflect data collected from population 2. The green diamonds and the green x reflect the chipped seed, while the orange triangles and the brown squares reflect data from unchipped seeds.

Graph 1.2 Average Root Length. The green diamonds and the brown squares reflects data collected from population 1, while the orange triangles and the green x's reflect data collected from population 2. The green diamonds and the green x reflect the chipped seed, while the orange triangles and the brown squares reflect data from unchipped seeds.

Graph 1.3 Percent Germinated. The green diamonds and the brown squares reflects data collected from population 1, while the orange triangles and the green x's reflect data collected from population 2. The green diamonds and the green x reflect the chipped seed, while the orange triangles and the brown squares reflect data from unchipped seeds.

Population	Chipped	GERM LSMEAN	FUNGUS LSMEAN	ROOT LSMEAN	The GLM Proc	edur	e lo: CERA			
TL11B 6603-1	Chipped	0.80600000	0.67050000	2.31000000	Source	DF	Type III	Mean	F Value	Pr>F
TL11B	Not	0.79000000	0.65600000	2.40150000			SS	Square		
AF13A 652-44	Chipped	0.96312500	0.02125000	3.86687500	Population	1	0.4880 4110	0.48804 110	32.81	<.0001
AF13A 652-44	Not chipped	0.98375000	0.01937500	3.72687500	Chipped	1	0.0000	0.00000	0.00	0.9923
Combined	Chipped	0.87583333	0.38194444	3.00194444						
Combined	Not chipped	0.87611111	0.37305556	2.99055556	Days after Chipping	1	0.2205 9187	0.22059 187	14.83	0.0003

Table 1.1 LSMeans for Three Factors.TLIIB 6603-1Table.Table.1.2 GLM Procereflects biostatistical analysis created from population 1uu

Table. 1.2 GLM Procedure with Germination as theDependent Variable.

The GLM Proc	he GLM Procedure Dependent Variable: FUNGU						edur	e le: ROOI	LENGTH		
Source	DF	Type III SS	Mean Square	F Value	Pr>F	Source	DF	Type III SS	Mean Sauare	F Value	Pr>F
Population	1	7.4661 0020	7.46610 020	296.79	<.0001	Population	1	39.282 61642	39.2826 1642	74.26	<.0001
Chipped	1	0.0014 2222	0.00142 222	0.06	0.8128	Chipped	1	0.0023 3472	0.00233 472	0.00	0.9472
Days after Chipping	1	0.1397 4188	0.13974 188	5.56	0.0213	Days after Chipping	1	6.6411 0750	6.64110 750	12.56	0.0007

Table 1.3 GML Procedure with Fungus as theDependent Variable

 Table 1.4 GML Procedure with Root Length as the

 Dependent Variable

3.1.6 Discussion

The graphs and figures show that over a month's time, chipping largely does not have a significant difference. Collectively, both chipped and unchipped seeds of the same population experienced approximately the same LSMeans, indicating that on the whole, there is no significant difference. This can also can be seen in **Table 1.5** where the P values indicate there is no significant difference. Days after Chipping and Population both are significant. This seems reasonable as technique improved over the long term. Also, population 2 (AF13A 652-44) on the whole proved to be more vigorous than population 1 (TL11B 6603-1). This can be seen when comparing the LSMeans of each population. This explains the significance factor. Population 2 appeared to remain more constant over the timespan, but it cannot be determined if this is due to treatment or population. Additional trials need to be run to confirm this.

Further, in **Graph 1.3**, there appears to be a start of a divergence between germination percent among chipped versus nonchipped seeds in the TL11B 6603-1 population. More time and trials need to be run to confirm if this is significant in that the seeds will have reduced viability or if the result is insignificant.

On the whole, the results prove that over a month's time, there is no significant difference in haploid seed viability. Hence, in using the F1 deployment model, this does not pose a significant problem. The seeds remain viable even if they are chipped.

3.2 Molecular Marker Assisted Selection

3.2.1 Introduction

CIMMYT is attempting to develop a marker-assisted-selection strategy known as forward breeding native trait alleles. In this process, molecular markers are employed to select progenies that carry a particular favorable allele. For example, in the Maize Quality and Nutrition Department at CIMMYT, researchers are investigating β -carotene hydroxylase 1 (crtRB1),

which is involved in the presence of provitamin-A compounds. This allele is considered favorable because activation will result in the accumulation of provitamin-A in the kernels. The prevalence of this gene in the kernels will allow for the conversion to vitamin A in the human body, reducing the prevalence of vitamin A deficiency. In order to ensure that all of the kernels contain the favorable gene, the progenies need to be fixed in a homozygous state.

There are two methods to best accomplish this fixed state. The first method is to take samples from the leaf tissues of F2 maize plants and analyze the DNA of each plant to determine the homozygosity. The plants that are homozygous for the favorable allele such as crtRB1 would be self-pollinated for the F3 plants. An alternate method is to use a method known as seed chipping, whereby slices of the endosperm are removed for DNA analysis. F2 maize kernels are chipped to determine the homozygosity. Those that are homozygous for the favorable allele can be grown out and self-pollinated. They also can be crossed with a DH inducer line. Both methods will produce plants that are homozygous for the selected trait.

3.2.2 Hypotheses

If using molecular markers, polymorphism will be detected between two populations: one with allele y1 (white seed color) and one with allele Y1 (yellow seed color). If the difference in alleles can successfully be distinguished using molecular markers, individual haploid kernel selection using molecular markers will be feasible.

3.2.3 Methodology

The first step was to identify a locus of interest. In my case, a haplotype that could be visually distinguished was chosen: the allele named y1 that causes a maize kernel to be white versus yellow. Because this haplotype was known to be on chromosome 6, SSR markers were identified that were adjoining to the y1 region. Using the primers adjoining the locus of interest, a test was designed to examine polymorphism between two of the parents of my population: CML 488 (a white parent) and CML 327 (a yellow parent). The template for the DNA was as follows:

	1	2	3	4	5	6
А	CMI	488	CMI	297	CML	. 327
В	CMI	488	CMI	495	CMI	.327

Table 1.5. Template for DNA for determining polymorphism between two parental populations

CML 297 and CML 495 were used as controls. Then, a master mix was prepared (see Appendix C). The PCR was conducted with four separate programs to correspond with different melting temperatures (TM) levels. The programs that were run consisted of: SSR52, SSR55, SSR60, and SSR65. Finally, the samples were each run on 3-4% agarose gels. After staining with ethidium bromide solution, pictures were taken using a UV light Photodoc system. The PCRs were examined for those that showed polymorphism between the two parent populations. In total, approximately 17 polymorphic markers were identified along chromosome 6 (see **Figure 6 and 7** for results). From there, the DH inducer line, Tail 9, was also included. The template for the DNA was as follows:

	1	2	3	4	5	6		
А	CMI	488	TAII	9	CM	L 327		
В	CMI	488	TAII	. 9	CML327			

Table 1.6. Template for DNA for fingerprinting including DH Inducer line, Tail 9.

PCR programs consisted of: SSR52, SSR55, SSR60, and SSR65. The samples were each run on 3-4% agarose gels. After staining with ethidium bromide solution, pictures were taken using a UV light Photodoc system. Finally, markers were identified that were 20 cM of y1. These included: bnlg1188,

bnlg1538, y1ssr, and umc1006. It was identified that the best results came from the program SSR55.

After chipping a total of 80 seeds, the DNA was isolated from 20 seeds of each phenotype: yellow haploid seeds and white haploid seeds after removing tissue from the endosperm of each seed using the seed chipping method (see Appendix B for protocol). The seeds came from population 2 (AF13A 652-44). Using the stock DNA concentration, a PCR plate was prepared using 3 µl of DNA in this order:

	1	2	3	4	5	6	7	8	9	10	11	12
Α	CML488	Y1	Y3	Y5	Y7	Y9	TAIL	W1	W3	W5	W7	W9
							9					
В	CML327	Y2	Y4	Y6	Y8	Y10	H ₂ 0	W2	W4	W6	W8	W10
С	CML488	Y11	Y13	Y15	Y17	Y19	TAIL	W11	W13	W15	W17	W19
							9					
D	CML327	Y12	Y14	Y16	Y18	Y20	H ₂ 0	W12	W14	W16	W18	W20

***Y denotes seeds with a yellow phenotypic color. W denotes weeds with a white phenotypic color. ***TAIL 9 is the DNA from the DH inducer line that represents the third parent.

Table 1.7. Template used for DNA extraction

The Master Mix prepared had the following reagents: SIGMA water - $3.55 \ \mu$ l Green Buffer 5x [1x] - $3.0 \ \mu$ l MgCl₂ 1.2 μ l - [2 mM] dNTPs 1.2 μ l - [2.5 μ M] Forward & Reverse primer [0.2 μ M] - 3 μ l Promega Taq [0.5 units/ μ l] - 0.05 μ l

The plate was run on SSR55, and the amplified solutions were run on polyacrylamide gels (See Figure 6). The results were then optimized. The modifications to the master mix are as follows:

SIGMA water - 3.85μ l Green Buffer 5x [1x] - 3.0μ l MgCl₂ [2 mM] - 0.9μ l dNTPs [2.5μ M] - 1.2μ l Forward & Reverse primer [0.2μ M] - 3μ l Promega Taq [0.5 units/microliter] - 0.05μ l

Three microliters of the stock DNA of the samples were amplified with the PCR program of SSR55. Finally, the amplified solution was run on polyacrylamide gels. For results on each of the gels, see the **3.2.4 Results** section.

3.2.4 Results

The results of the CML 488/CML 495/CML 297/CML 327 gels demonstrate that there is polymorphism in some markers along chromosome 6 as seen in **Figure 7-9** (labeled yellow). Many of the optimized results similarly demonstrate polymorphism (see **Figure 10-13**). Out of the four markers that were within 20 cM of the Y1 locus (bnlg1188, bnlg1538, y1ssr, and umc1006), only three showed polymorphism. Y1SSR and BNLG1188 were run on polyacrylamide gels as seen in **Figure 14-16**. In **Figure 15**, the optimized PAGE results show polymorphism between the samples and the parents. The white population has bands that ran the same bp length as that of CML 488 (white parent) and Tail 9 (inducer line) while the yellow population has bands that ran the same bp lengths can be easily differentiated.

3.2.4 Tables and Figures

Figure 7. Agarose Gel Pictures with SSR Primers under Chromosome 6.

Figure 8. Agarose Gel Pictures with SSR Primers under Chromosome 6.

Figure 9. Agarose Gel Pictures with SSR Primers under Chromosome 6.

MM	bnlg1139							um	c138	8				umo	1795					um	:1805			
	CML488	CML458	TAIL.9	TAIL9	CML327	CML327	CML 481	CML 488	TAIL 9	TAIL.9	CML R7	CML 227	CML488	CML 488	TAIL 9	EAIL 9	CML 227	CML X27	CML 488	CML 488	TAIL 9	TAIL 9	CML 327	CMI 327
MM			umo	:1859)				um	c200	6				umo	1257	Ì				um	:1922		
	CML 488	CML 488	TAIL 9	TAIL 9	CML 327	CML 327	CML 488	CML488	6 TIVL	1 TAIL 9	CML 327	CML 327	CML 488	CML 488	6 TIVI	TAIL 9	CML 327	CML 327	-	-	-	-	-	1000
States -		1	-	-	-	-	I		Pares.	-	-	-		-					CML 488	CML 488	TAIL 9	TAIL 9	CML327	CML 327
MM			uma	:1463	3				um	c1614	4				umc	1883					en	npty		
11	CML 488	CML 488	TAIL 9	TAIL 9	CML 327	CML X27	CML 488	CML 488	TAIL 9	4 TAIL 9	CML 327	CMI. 327	CML 488	CML 488	6 TIVI	6 TIVIT 6	CML 327	CML 327						*
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-						

 Figure 10. SSR 52 FINGERPRINTING CML 488/TAIL 9/CML 327

 §
 bnlg1043

 bnlg1165
 bnlg1188

Figure 11. SSR 55 Fingerprinting CML 488/Tail 9/CML 327

-	_	bnlg	1422	5			bnlg1521				-			bnig	1371	3	Sec. 1	C. Carlos		bnlg	1740	-		MW
34L 485	381 TW		ALL V	ALL IN	WL 327	ff. 488	AL 488	0 II	E.	(LW)	lar u	Cont.	CMUA		C UNI	A HIVI	C-INC)		- Mo	CML ⁴	TAL V		Cate 2	
~		bnlg	1922				-0	bnlg	1432		-0-			bnig	2151					bnl	g345			MM
ML 458	ML 488	AL9	AIL 9	ML 327	ML 327	ML488	ML 48K	AIL 9	INL 9	ML 327	728.JMC	CML 488	CML 488	FAIL 9	ALL 9	TAL 327	2ML 327	CML 488	CML 488	TAIL 9	TAIL.9	CML 327	CML 327	A ALL
×	~	umc	1105	5	5	1		umo	1248	1				umo	1463					umo	1614			W
CML 48	CML 48	+ TAIL 9	TAIL 9	CML 32	CML 32	CML 489	CML 488	6 TIVI 6	6 TIVL	CML 323	CML 327	CMI. 488	CML 488	TAIL 9	TAIL 9	CML 327	CML 327	CML 458	CML 488	TAIL 9	6 TIVIT 6	CML 327	CML 317	
		umc	1628	i				umo	2170	,				y1	SSR					y1	SSR			N
CML 488	CML 488	TAIL 9	TAIL 9	CML 327	CML 327	CAL-488	CML 488	TAIL 9	TAILS	CML 327	CML 327	CML 455	CAL 455	TAIL 9	TAIL 9	241.107	CML 317	CML 458	CML 488	and a state	TML 9		CALUT	· ···································

Figure 12. SSR 60 FINGERPRINTING CML 488/ TAIL 9/ CML 327

Figure 13. SSR 65 Fingerprinting CML 488/Tail 9/CML 327

Figure 14. PAGE results with Y1SSR under SSR55

Figure 15. Optimized PAGE results with Y1SSR under SSR60

Figure 16. PAGE Results with BNLG1188 under SSR60

3.2.5 Discussion

In **Figure 15** and **Figure 16**, it can be observed that each of the samples has two bands. In both the white and the yellow samples, the bands have a bp length that is the same as Tail 9 (the inducer line). In the white population, the samples also have a band that has the same bp length as CML 488 (the white parent). While in the yellow population, the samples have a band that has the same bp length as CML 327 (the yellow parent). Hence, differentiation between alleles of the parents and the inducer line can be observed, and individual haploid kernel selection using molecular markers can be feasible. Molecular markers can help to select for haploids that contain the favorable allele because it is possible to differentiate between the unfavorable alleles of the parental populations and the inducer lines.

4 - Regional and Cultural Experiences

My experiences in Mexico were nothing short of spectacular. CIMMYT became more than just a summer internship to me. Through the Borlaug-Ruan Internship, not only was I able to experience another culture, but I was also able to learn more about my own culture and how it is different. I have learned a countless number of new things about agriculture, the Spanish language, and the Mexican culture. The experiences and the people that I have met here have defined my experience while in Mexico.

CIMMYT is a research institution comprised of an international faculty. I had the opportunity to constantly interact with people from all around the world. On my first day here, I met people with nationalities from Mexico, Belgium, Peru, Germany, the Philippines, Thailand, and South Africa. Consequently, I found myself constantly adjusting. By the end of my internship, I had adjusted to the fact that if you see someone that you know while walking, they will stop to talk and catch up with you despite

their busy schedule. Most of all, I have come to know and appreciate the sense of community within CIMMYT. Everyone seemed to go out of their way to assist me in any way they see fit.

Being able to understand the Spanish language has made my experiences here all the more memorable as I was able to interact with the locals and understand the culture all-the-more. I had the opportunity to go out into the markets on the weekends and speak with vendors and other locals. The opportunity to communicate with members of the community has been a memorable experience for me. I have been able to understand the community more because of this ability. It has culminated in a wide variety of new knowledge about Mexico and the Mexican people.

More surprisingly, I was shocked to find how many people are able to speak English here. Many people inform me that it is necessary in order to write their research papers. Still, having taken four years of Spanish, I know that my language skills still have not become as fluid as some people who have only taken two years of English. I have always heard that English is the international language, and CIMMYT seems to embody this idea. With such an international faculty, I was never surprised to hear Spanish or English conversations going on among many people of all different nationalities.

Throughout my time in Mexico, I had the privilege of seeing both the modern aspects of Mexico as well as the more rural aspects. Both were entirely beautiful in their own way. The juxtaposition between the ancient, the colonial, and the modern parts of Mexico are all embodied in urban metropolis of Mexico City. Most evidently I saw how each of the different cultures built upon each other when I visited Zócalo, the main square in the Historical District of Mexico City. There, Templo Mayor, the major pyramid of the Aztecs, once stood. When the Spanish came, they used many of the stones to build the buildings such as the Palacio Nacional and the Catedral Metropolitana. Further off into the distance, the modern aspects of shopping malls and restaurants can be seen. The juxtaposition of all three times is rare to find, and it is nothing short of spectacular. This combination occurred again when I visited Cholula where there was a church built on top of an ancient pyramid. I saw the clashing of different times all throughout my visits in Mexico, and it was nothing short of spectacular.

Besides the modern aspects of Mexico, I also had the privilege of traveling to the more rural aspects of Mexico. I travelled to the state of Hidalgo where once again I was able to see the striking differences between the urbanization of the "Magic Towns" and the bucolic beauty of the landscape. The same occurred when I travelled to Agua Fría. I saw many people trying to sell fruits out of their home, barely making it by; yet, nearby, larger cities arose from the jungle. It made me contemplate that just a few kilometers away from this abject poverty there was a sprawling city. Ultimately, these experiences pushed me all the harder in my work. I often reminiscence on how one of my colleagues responded to one of my questions regarding why he went into this field. He said, "I went into this field because it really matters. People really need us to do this." I could not agree more.

Personal Reflection

From the busy streets of Texcoco to the bucolic beauties of Agua Fría, the Borlaug-Ruan Internship at CIMMYT Mexico has been an utterly transformative experience. Being around such impassioned people has encouraged me to try, in whatever way possible, to make a difference.

During my experience here, I not only learned about what it means to be a farmer in Mexico, but I learned about the tedious agricultural processes of pollination and the careful techniques to take care of maize doubled haploid plants. I was immersed in a language in which I knew nothing about: agriculture. Agriculture does not just have to do with planting the crop, giving it water, and watching it grow; rather, agriculture is about making sure the people all around the world have sufficient food of adequate nutritional quality to ensure they can live healthy, happy lives. Through these experiences, my views on food security have also been completely altered. Agriculture is much bigger than going to the grocery store to by flour or stopping on the side of the road to by corn from a local farmer. The dedicated CIMMYT scientists have proven and taught me that agriculture has a much broader meaning than the average American consumer realizes, that I realized.

My most notable experience here occurred after I presented my findings to my mentors. I have never seen such excitement for what was to come. All of the hard work and dedication that I had put into getting the results was instantly worth it. With the help of researchers at CIMMYT, provitamin A can be and will be introduced into maize plants, which will help to combat VAD and malnutrition. I was similarly inspired by the abject poverty of some here in Mexico. Lack of food and sanitation poses a major problem for some people. Ensuring that these people get the proper materials to live healthy lives will continue to pose a problem in coming years. I am humbled as to have been part of an effort to combat issues of malnutrition and food instability while here in Mexico.

Above all, my journeys here in Mexico have forced me to realize that it is our duty, our responsibility as a global, national, and local community to ensure that the people who do not have food of adequate nutritional quality receive the help they need to live healthy, happy lives. It is our obligation as citizens of the world to fight against this universal problem of hunger and malnourishment. Consequently, it is paramount that we learn about these issues and learn how to treat them in sustainable methods. Together, we must unite to fight against the global issues of food insecurity; we cannot do it alone.

Citations:

B.M. Prasanna, Vijay Chaikam and George Mahuku (eds). 2012. Doubled Haploid Technology in Maize Breeding: Theory and Practice. Mexico, D.F.: CIMMYT.

Babu et al. 2013. Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theoretical and Applied Genetics: International Journal of Plant Breeding Research. 126:381-399.

"CIMMYT and Mexico." 1985. The International Maize and Wheat Improvement Center.

"CIMMYT Intellectual Property Policy." Centro Internacional de Mejoramiento de Maíz y Trigo. 2013. Retrived 22 July 2013, from <u>http://intranet.cimmyt.org/en/services/seed/cimmyt-intellectual-property-policy</u>

Georgiev, S. 2008. Haploids in Genetic and Cytogenetical Research. *Biotechnology and Biotechnological Equipment*. 644-651.

Appendix A

Chemical treatment 38 mL Maximxl 4 L Semerin 350 4 mL Apron XL 200 g Captan 50 mL Adherente (pegamento) tinte (rojo) 900 mL agua

Appendix B DNA ISOLATION FROM ENDOSPERM TISSUE (in microtubes Neptune of 1.1 ml)

Tissue collection and grinding

- 1. Identify the microtubes and plates. Follow the same id format to make a correct locate of the seeds.
- 2. Collect 20 mg of endosperm tissue in small pieces. Use a scissor to cut nails of dogs and a fitted funnel to facilitate the sampling. Avoid touching the embryo or fracturing the rest of the seed.
- 3. Grind to a fine powder with a ball of 5/32" (Open Diagnostics GBSS 156-500-01) per tube. Use 2-3 min for 30 1/s of frequency in the Tissuelyser (Quiagen) or 1500 rpm for 3 min in Geno/Grinder 2010 (Spex Sample Prep) machine.
- 4. Keep the samples hermetically capped until the extraction.

DNA isolation

- 1. Add 400 ul of warm CTAB-lauril sarcosyl buffer (warmed at 65°C)¹. Secure the plates with a lid fixed with rubber bands to prevent leakage. Mix by inversion.
- **2.** Incubate the samples for 90 min at RT with continuous gentle rocking. Check the plates often to detect some leakage.
- **3.** Give a brief spin. Add 400 ul of phenol:chloroform $(1:1)^2$. Again secure the plates with the lid and the rubber bands. Mix well. Incubate the samples under stirring for 15 min at RT.
- 4. Centrifuge samples at 3500 rpm for 15-20 min at RT.
- 5. Transfer 400 ul of aqueous layer in new tubes.
- 6. Precipitate DNA adding 340 ul (1:1 ratio based on the amount of solution in the tubes) of cold isopropanol. Mix gentle by inversion until see the "fiber" of DNA. Incubate at -20°C for 60 min (you can leave the samples in this step overnight).
- 7. Centrifuge at 3500 rpm for 30 min at 4°C. Pour off the isopropanol.
- **8.** Add 400 ul of 70% ethanol. Centrifuge at 3500 rpm for 15 min at 4°C. Pour off the ethanol. Do this step thrice.
- 9. Evaporate remaining ethanol leaving the samples in a laminar hood overnight.
- 10. Dilute the DNA in 100 ul of TE pH 8.0 or water (Sigma W3500).

CTAD-lauri	i sarcosyi du	tier to isol	ate DNA usin	ig interotubes	01 1.1 IIII
SOL. CONC.	[FINAL]	25 rxn 10 ml	250 rxn 100 ml	500 rxn 200 ml	750 rxn 300 ml
dH20		5.6 ml	56.0 ml	112.0 ml	168.0 ml
1 M Tris-7.5	100 mM	1.0 ml	10.0 ml	20.0 ml	30.0 ml
5 M NaCl	700 mM	1.4 ml	14.0 ml	28.0 ml	42.0 ml
0.5 M EDTA-8.0	50 mM	1.0 ml	10.0 ml	20.0 ml	30.0 ml
CTAB	1 %	0.1 gr	1.0 gr	2.0 gr	3.0 gr
10% Sarcosyl ³	1 %	1.0 ml	10.0 ml	20.0 ml	30.0 ml

CTAB-lauril s	sarcosyl buffer	¹ to isolate DNA	using	microtubes	of	1.1	. ml	l

¹ Use a fresh buffer every time. Before adding CTAB (Sigma M-7635) and lauril sarcosyl (Sigma L5125), heat the buffer until 65 °C. You can prepare the buffer one day before to DNA isolation, but do add neither CTAB nor sarcosyl.

² Take the phenol (Sigma P4557) without touching the Tris layer. Mix it vigorously with the chloroform (Baker 9180) before add to the samples. Do not use the phenol if it has a rose color.

4 Sterilize by filtration the 10% lauril sarcosyl solution before aliquote.

Appendix C

MASTERMIX USED FOR FINGERPRINTING SIGMA water 6.4 10x 1.5 dNTPs 1 [2.5 µM] MgCl2 0.8 [50 mM] F + R primers 3 [1 μ M] Taq 0.3 [5 units/microliter] DNA 2 [40 ng/ml]

Appendix D

	WI	THOUT DAC AS COV	ARIABLE 1	1:03 Monday,	July 29, 2	013
		The GLM Proced	lure			
	C	lass Level Infor	rmation			
	Class POP	Levels Valu 2 A T	ies			
		10 1 2 2 C NC	34567891	9		
	CHIPPED	2 CNC				
	Number of Number of	⁻ Observations Re ⁻ Observations Us	ead 72 Sed 72			
	WT	THOUT DAC AS COV	ARTABLE 1	1:03 Monday.	Julv 29, 2	013
Dependent Verichles CEDM	WI	THOUT DAC AS COV The GLM Proced	/ARIABLE 1: lure	1:03 Monday,	July 29, 2	013
Dependent Variable: GERM	MI	THOUT DAC AS COV The GLM Proced Sum of	/ARIABLE 1: lure	1:03 Monday,	July 29, 2	013
Dependent Variable: GERM Source	WI DF	THOUT DAC AS COV The GLM Proced Sum of Squares	/ARIABLE 1: lure Mean Square	1:03 Monday, F Value	July 29, 2 Pr > F	013
Dependent Variable: GERM Source Model	WI DF 1	THOUT DAC AS COV The GLM Proced Sum of Squares 0.00000139	/ARIABLE 1: lure Mean Square 0.00000139	1:03 Monday, F Value 0.00	July 29, 2 Pr > F 0.9941	013
Dependent Variable: GERM Source Model Error	WI DF 1 70	THOUT DAC AS COV The GLM Proced Sum of Squares 0.00000139 1.77933056	/ARIABLE 1: lure Mean Square 0.00000139 0.02541901	1:03 Monday, F Value 0.00	July 29, 2 Pr > F 0.9941	013
Dependent Variable: GERM Source Model Error Corrected Total	WI DF 1 70 71	THOUT DAC AS COV The GLM Proced Sum of Squares 0.00000139 1.77933056 1.77933194	/ARIABLE 1: lure Mean Square 0.00000139 0.02541901	1:03 Monday, F Value 0.00	July 29, 2 Pr > F 0.9941	013

	0.000001	18.	20074	0.159433	0.8759	72		
Source	I	DF	Type I S	S Mean	Square	F Value	Pr > F	
CHIPPED		1	1.3888889E-	6 1.388	8889E-6	0.00	0.9941	
Source	I	DF	Type III S	S Mean	Square	F Value	Pr > F	
CHIPPED		1	1.3888889E-	6 1.388	8889E-6	0.00	0.9941	
		WITHC	UT DAC AS C	OVARIABLE	11:0	3 Monday,	July 29, 201	13
		т	he GLM Proc	edure				

Dependent Variable: FUNGUS

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	1	0.00142222	0.00142222	0.01	0.9174
Error	70	9.19912778	0.13141611		
Corrected Total	71	9.20055000			

	R-Square	Coet	ff Var	Root MS	SE	FUNGUS	Mean		
	0.000155	96	.03009	0.3625	14	0.37	7500		
Source		DF	Type I	SS	Mean	Square	F Value	Pr > F	
CHIPPED		1	0.001422	22	0.00	142222	0.01	0.9174	
Source		DF	Type III	SS	Mean	Square	F Value	Pr > F	
CHIPPED		1	0.001422	22	0.00	142222	0.01	0.9174	
	-	WITH	HOUT DAC AS The GLM Pro	COVARIA cedure	ABLE	11	L:03 Monday,	July 29,	2013
Dependent Variable: ROO	I		Sum	of					
Source		DF	Squar	es	Mean	Square	F Value	Pr > F	
Model		1	0.002334	72	0.00	233472	0.00	0.9640	
Error		70	79.531552	78	1.13	616504			
Corrected Total		71	79.533887	50					
	R-Square	Coe	eff Var	Root M	1SE	ROOT	Mean		
	0.000029	35	5.57482	1.0659	910	2.99	96250		
Source		DF	Type I	SS	Mean	Square	F Value	Pr ≻ F	
CHIPPED		1	0.002334	72	0.00	233472	0.00	0.9640	
Source		DF	Type III	SS	Mean	Square	F Value	Pr > F	
CHIPPED		1	0.002334	72	0.00	233472	0.00	0.9640	
		WITH	HOUT DAC AS	COVARIA	ABLE	11	L:03 Monday,	July 29,	2013
		I	The GLM Pro east Square	cedure s Means	5				
				FUN	GUS				

CHIPPED GERM LSMEAN

LSMEAN ROOT LSMEAN

C	C	0.87583 0.87611	333 111	0.38194 0.37305	444 556	3.0019 2.9905	94444 55556		
		WIT	H DAC AS	COVARIA	BLE	11:0	3 Monday,	July 29,	2013
	Class POP TRIAL CHIPPED	- Clas: Lo	The GLM s Level evels 2 10 2	Procedur Informat Values A T 1 2 3 4	e ion 5673	3 9 10			
	Numb	er of Ob	2 servatio	ns Read		72			
	Numb	er of Ob	servatio	ns Used		72			
Dependent Variable: GER	М	WI II TI	ne GLM P	rocedure	BLE	11:0	3 Monday,	July 29,	2013
			Sum	of					
Source		DF	Squ	ares	Mean So	quare	F Value	Pr ≻ F	
Model		2	0.2797	2223	0.1398	36111	6.44	0.0027	
Error		69	1.4996	0971	0.021	73347			
Corrected Total		71	1.7793	3194					
	R-Square	Coef	F Var	Root	MSE	GERM Me	ean		
	0.157206	16.3	82962	0.147	423	0.8759	972		
Source		DF	Type	I SS	Mean So	quare	F Value	Pr > F	
CHIPPED		1	0.0000	0139	0.000	90139	0.00	0.9936	
DAC		1	0.2797	2084	0.279	72084	12.87	0.0006	
Courses		DE	T	T CC	Magin C				
Source			Type II	1 SS 01 20	Mean So	quare	F Value	Pr > F	
		1 1	0.0000	2084	0.000	72084	0.00	0.9936	
DAC		1	0.2/5/	2004	0.275	2004	12.07	0.0000	
		WITI	H DAC AS	COVARIA	BLE	11:0	03 Monday,	July 29,	2013
Dependent Variable: FUN	GUS		IE GLM P	roceuure					
-F			Su	m of					
Source		DF	Squ	ares	Mean So	quare	F Value	Pr > F	
Model		2	0.0238	3952	0.011	91976	0.09	0.9144	
Error		69	9.1767	1048	0.1329	99580			
Corrected Total	D C	71	9.2005	5000	~~ -				
	R-Square	Coett	Var	κοοτ Μ	SE FI	JNGUS ME	ean		
	0.002591	96.60	9554	0.3646	86	0.3775	500		
Source		DF	Туре	I SS	Mean So	quare	F Value	Pr > F	
CHIPPED		1	0.0014	2222	0.0014	42222	0.01	0.9179	
DAC		T	0.0224	1/30	0.0224	41730	0.17	0.6827	
Source		DF	Type II	I SS	Mean So	quare	F Value	Pr ≻ F	
CHIPPED		1	0.0014	2222	0.0014	12222	0.01	0.9179	
DAC		1	0.0224	1730	0.0224	41730	0.17	0.6827	
		WITI	H DAC AS ne GLM P	COVARIA	BLE	11:0	3 Monday,	July 29,	2013
Dependent Variable: ROO	т								
-			Su	m of				_	
Source		DF 2	Squ	ares	Mean So	quare	F Value	Pr > F	
Free		2 69	4.2824	4020 3920	2.141	22415 50057	1.96	0.1482	
Corrected Total		71	79.5338	8750	1.050	50057			
	R-Square	Coef	f Var	Root	MSE	ROOT Me	ean		

		0.053844		34.85418	1.044	4318	2.996	5250		
	Sounce		DE	Type	тсс	Moon S	auano	E Value	Dn \ E	
	CHTPPED		1	0 002	33472	0 002	33472	0 00	0 9632	
	DAC		1	4.280	11358	4.280	11358	3,92	0.0516	
			_							
	Source		DF	Type I	II SS	Mean S	quare	F Value	Pr > F	
	CHIPPED		1	0.002	33472	0.002	33472	0.00	0.9632	
	DAC		1	4.280	11358	4.280	11358	3.92	0.0516	
				WITH DAC A	S COVARI	ABLE	11	:03 Monday,	July 29,	2013
				The GLM Least Squ	Procedure ares Mea	e ns				
					FUI	NGUS				
	C	HIPPED	GERM	LSMEAN	LSI	MEAN	ROOT I	_SMEAN		
	_									
	C	-	0.87	/583333	0.38194	4444	3.001	194444		
	N	C	0.87	611111	0.3730	5556	2.996	955556		
			WITHC	OUT DAC AS	COVARIABI	LE + POP	P 11	:03 Monday,	July 29,	2013
				The GLM	Procedure	e				
			C	lass Level	Informat	tion				
		Class		Levels	Values					
		POP		2	ΑΤ					
		TRIAL		10	1234	4567	8 9 10			
		CHIPPED)	2	C NC					
		Normal		0h + +			70			
		Numb	per of	Observation Observation	ons Read ons Used		72 72			
			WITHO		COVARTARI		> 11	03 Monday	July 29	2013
			WITTIC	The GLM	Procedure		11	.05 Honday,	July 20,	2015
Depender	nt Variable: GER	М				-				
				S	um of					
	Source		DF	Sq	uares	Mean S	Square	F Value	Pr > F	
	Model		2	0.547	17146	0.273	58573	15.32	<.0001	
	Error		69	1.232	16049	0.017	85740			
	Corrected Total		71	1.779	33194					
		P-Squane	~	ooff Van	Poot	MCE	CEDM N	lean		
		0 307515	, c	15 25523	A 13	2632		10011 1072		
		0.507515		13.23525	0.15.	5052	0.07.	572		
	Source		DF	Tvpe	I SS	Mean S	Guare	F Value	Pr ≻ F	
	POP		1	0.547	17007	0.547	17007	30.64	<.0001	
	CHIPPED		1	0.000	00139	0.000	00139	0.00	0.9930	
	Source		DF	Type I	II SS	Mean S	Square	F Value	Pr > F	
	POP		1	0.547	17007	0.547	17007	30.64	<.0001	
	CHIPPED		1	0.000	00139	0.000	00139	0.00	0.9930	
			WITHC	OUT DAC AS The GLM	COVARIABI Procedure	LE + POP e	P 11	:03 Monday,	July 29,	2013
Depender	t Vaniahla, EUM	GUS								
Depender	it valiable. FUN			ç	um of					
	Source		DF	Sur Sur	uares	Mean S	auare	F Value	Pr > F	
	Model		2	7.350	19785	3.675	509892	137.05	<.0001	
	Error		69	1.850	35215	0.026	81670			
	Corrected Total		71	9.200	55000					
					-					
		R-Square	Co	eff Var	Root N	MSE F	UNGUS N	lean		
		0.798887	4	3.37962	0.163	758	0.377	7500		

	Source		DF	Type	I SS	Mean Sq	uare F	Value	Pr > F	
	POP		1	7.3487	7562	7.3487	7562	274.04	<.0001	
	CHIPPED		1	0.0014	2222	0.0014	2222	0.05	0.8185	
	Source		DF	Type II	I SS	Mean Sq	uare F	Value	Pr > F	
	POP		1	7.3487	7562	7.3487	7562	274.04	<.0001	
	CHIPPED		1	0.0014	2222	0.0014	2222	0.05	0.8185	
							44 00		- 1	
			MITHOU	I DAC AS C	OVARIABL	.E + POP	11:03	Monday,	July 29,	2013
Donondo	nt Vaniahlas POOT			The GLM P	roceaure	2				
Depende	int variable: ROOT			Sum	of					
	Source		DE	Sau	ares	Mean So	uare F	Value	Pr > F	
	Model		2	36 9239	5722	18 4619	7861	29 90	< 0001	
	Error		69	42,6099	3028	0.6175	3522			
	Corrected Total		71	79.5338	8750					
		R-Square	Co	eff Var	Root	MSE	ROOT Mear	ı		
		0.464254	2	5.22725	0.785	834	2.996250)		
	Source		DF	Туре	I SS	Mean Sq	uare F	Value	Pr > F	
	POP		1	36.9216	2250	36.9216	2250	59.79	<.0001	
	CHIPPED		1	0.0023	3472	0.0023	3472	0.00	0.9511	
								_		
	Source		DF	Type II	ISS	Mean Sq	uare F	Value	Pr > F	
	POP		1	36.9216	2250	36.9216	2250	59.79	<.0001	
	CHIPPED		1	0.0023	3472	0.0023	3472	0.00	0.9511	
							11.02	Monday	JUL 20	2012
			WITHOU		UVARIADL	.c + PUP	11:05	monuay,	July 29,	2013
					rec Mear	:)				
				Least Squa	nes near	15				
					FUN	IGUS				
	СН	IPPED	GERM L	SMEAN	LSM	1EAN	ROOT LSME	AN		
	С		0.885	57986	0.34622	2569	3.082006	594		
	NC		0.885	85764	0.33733	8681	3.070618	306		
			WITH	DAC AS CO	VARIABLE	+POP	11:03	Monday,	July 29,	2013
				The GLM P	rocedure	2				
			C1	ass Level	Informat	ion				
		Class		Levels	Values					
		POP		2	AI					
		TDTAL		10	1 2 2 4		0 10			
			`	10			9 10			
		CHIPPEL	,	Z	CINC					
		Numb	her of (Observatio	ns Read		72			
		Numb	per of (Observatio	ns Used		72			
							. –			
			WITH	DAC AS CO	VARIABLE	+POP	11:03	Monday,	July 29,	2013
				The GLM P	rocedure	2			, ,	
Depende	nt Variable: GERM									
				Su	ım of					
	Source		DF	Squ	ares	Mean Sq	uare F	Value	Pr > F	
	Model		3	0.7677	6333	0.2559	2111	17.20	<.0001	
	Error		68	1.0115	6861	0.0148	/601			
	corrected Total		/1	1.7793	3194					
		D. C	6	- C.C. \/	D	мсг				
		K-Square	LO	ett var	KOOT	115E	OFKM Mear	1		
		0.431490	1.	5.92304	0.121	.907	0.0/59/2	<u>.</u>		
	Source		DF	Type	ISS	Mean So	uare F	Value	Pr > F	
	POP		1	0.5471	7007	0.5471	7007	36.78	<.0001	
	CHIPPED		1	0.0000	0139	0.0000	0139	0.00	0.9923	
	DAC		1	0.2205	9187	0.2205	9187	14.83	0.0003	

	Source POP CHIPPED		DF 1 1	Type I 0.488 0.000	II SS 04110 00139 50187	Mean S 0.488 0.000	quare 04110 000139	F Value 32.81 0.00	Pr > F <.0001 0.9923	
	DAC		T WITH	DAC AS C	OVARIABI	_E +POP	11	:03 Monday,	July 29,	2013
Depende	nt Variable: FU	NGUS		The GLM	Procedur	re				
·				S	um of			_		
	Source Model Error		DF 3 68	Sq 7.489 1.710	uares 93972 61028	Mean S 2.496 0.025	quare 64657 15603	F Value 99.25	Pr > F <.0001	
	Corrected Tota	1	71	9.200	55000					
		R-Square 0.814075	Coe 42	ff Var .01498	Root 0.158	MSE F 3607	UNGUS 0.37	Mean 7500		
	Source		DF	Туре	I SS	Mean S	Square	F Value	Pr ≻ F	
	POP		1	7.348	77562	7.348	377562	292.13	<.0001	
	CHIPPED		1	0.001	42222	0.001	42222	0.06	0.8128	
	DAC		1	0.139	74188	0.139	74188	5.56	0.0213	
	Source		DF	Type I	II SS	Mean S	quare	F Value	Pr > F	
	POP		1	7.466	10020	7.466	510020	296.79	<.0001	
	CHIPPED		1	0.001	42222	0.001	42222	0.06	0.8128	
	DAC		T	0.159	/4100	0.155	74100	5.50	0.0215	
			WITH	DAC AS C The GLM	OVARIABI Procedur	_E +POP re	11	:03 Monday,	July 29,	2013
Depende	nt Variable: RO	от		ς	um of					
	Source		DF	Sq	uares	Mean S	quare	F Value	Pr ≻ F	
	Model		3	43.565	06472	14.521	68824	27.45	<.0001	
	Error		68	35.968	82278	0.528	895328			
	Corrected Tota	1	71	79.533	88750					
		R-Square 0.547755	Co 2	eff Var 4.27340	Root 0.72	t MSE 27292	ROOT 2.99	Mean 6250		
	Source		DF	Type	T SS	Mean S	Guare	E Value	Pr > F	
	POP		1	36.921	62250	36.921	.62250	69.80	<.0001	
	CHIPPED		1	0.002	33472	0.002	33472	0.00	0.9472	
	DAC		1	6.641	10750	6.641	10750	12.56	0.0007	
	Source		DF	Type I	II SS	Mean S	quare	F Value	Pr ≻ F	
	POP		1	39.282	61642	39.282	61642	74.26	<.0001	
	CHIPPED		1	0.002	33472	0.002	33472	0.00	0.9472	
	DAC		1	6.641	10/50	6.641	.10/50	12.56	0.000/	
			WITH	DAC AS C The GLM Least Squ	OVARIABI Procedur ares Mea	_E +POP re ans	11	:03 Monday,	July 29,	2013
				·	Fl	JNGUS				
		CHIPPED	GERM L	SMEAN	LS	SMEAN	ROOT	LSMEAN		
		C NC	0.885 0.885	06944 34722	0.3458 0.3369	31944 93056	3.08 3.07	480754 341865		
			WIT Cl	HOUT DAC The GLM ass Level	AS COVAF Procedur Informa	RIABLE re ation	11	:03 Monday,	July 29,	2013
				Levels	Valuer	-				
		POP		2	A T					
		TRIAL		10	123	4567	8 9 10			
		CHIPPE	2	2	C NC					

	Num Num	ber of ber of	Observatio Observatio	ons Rea ons Use	d d	72 72			
		WI	THOUT DAC	AS COVA Procedu	RIABLE	11	:03 Monday,	July 29,	2013
Dependent Variable: GER	1				i c				
Source Model Error Corrected Total		DF 1 70 71	Sur Squ 0.0000 1.779 1.779	n of uares 00139 33056 33194	Mean 0.00 0.02	Square 000139 2541901	F Value 0.00	Pr ≻ F 0.9941	
	R-Square	C	oeff Var	Roo	t MSE	GERM	Mean		
	0.000001		18.20074	0.1	59433	0.87	5972		
Source CHIPPED		DF 1	Type 1.38888	I SS 89E-6	Mean 1.3888	Square 8889E-6	F Value 0.00	Pr > F 0.9941	
Source CHIPPED		DF 1	Type II 1.388888	II SS 89E-6	Mean 1.3888	Square 8889E-6	F Value 0.00	Pr > F 0.9941	
		WI	THOUT DAC A The GLM I	AS COVA Procedu	RIABLE	11	:03 Monday,	July 29,	2013
Dependent Variable: FUN	GUS		Sur	n of					
Source		DF	Sqi	uares	Mean	Square	F Value	Pr ≻ F	
Model		1	0.0014	42222	0.00	142222	0.01	0.9174	
Error		70	9.1993	12778	0.13	8141611			
Corrected Total		71	9.200	55000					
	R-Square	Co	eff Var	Root	MSE	FUNGUS	Mean		
	0.000155	9	6.03009	0.36	2514	0.37	7500		
Source CHIPPED		DF 1	Type 0.0014	I SS 42222	Mean 0.00	Square)142222	F Value 0.01	Pr > F 0.9174	
Source CHIPPED		DF 1	Type II 0.0014	II SS 42222	Mean 0.00	Square)142222	F Value 0.01	Pr ≻ F 0.9174	
		WI	THOUT DAC A	AS COVA Procedu	RIABLE	11	:03 Monday,	July 29,	2013
Dependent Variable: ROO	Г		c.	um of					
Source		DF	Squ	uares	Mean	Square	F Value	Pr ≻ F	
Model		1	0.002	33472	0.00	233472	0.00	0.9640	
Error Corrected Total		70 71	79.531	55278 88750	1.13	616504			
	R-Square 0.000029	С	oeff Var 35.57482	Roo 1.0	t MSE 65910	ROOT 2.99	Mean 96250		
Source CHIPPED		DF 1	Type 0.0023	I SS 33472	Mean 0.00	Square 233472	F Value 0.00	Pr > F 0.9640	
Source CHIPPED		DF 1	Type I 0.002	II SS 33472	Mean 0.00	Square 233472	F Value 0.00	Pr > F 0.9640	
		WI	THOUT DAC / The GLM I Least Squa	AS COVA Procedu ares Me	RIABLE re ans	11	:03 Monday,	July 29,	2013
CI	HIPPED	GERM	LSMEAN	F	UNGUS SMEAN	ROOT	LSMEAN		

	C NC		0.87583 0.87611	333 111	0.38194 0.37305	444 556	3.00194 2.99055	1444 5556		
			WIT T Clas	H DAC AS he GLM P s Level	COVARIA rocedure Informat	BLE ion	11:03	3 Monday,	July 29,	2013
		Class	L	evels	Values					
		POP TRIAL CHIPPED		2 10 2	A T 1 2 3 4 C NC	5678	9 10			
		Numbe Numbe	er of Ob er of Ob	servatio servatio	ns Read ns Used		72 72			
			TIW T	H DAC AS he GLM P	COVARIA rocedure	BLE	11:03	3 Monday,	July 29,	2013
Dependent	Variable: GERM			Sum	of					
S	ource		DF	Squ	ares	Mean Sq	uare	F Value	Pr ≻ F	
М	odel		2	0.2797	2223	0.1398	6111	6.44	0.0027	
E	rror		69 71	1.4996	0971 3197	0.0217	3347			
C		R-Square	Coef	f Var	Root	MSE	GERM Mea	an		
		0.157206	16.	82962	0.147	423	0.87597	72		
S	ource		DF	Туре	I SS	Mean Sq	uare	F Value	Pr ≻ F	
C	HIPPED		1	0.0000	0139	0.0000	0139	0.00	0.9936	
D.	AC		1	0.2797	2084	0.2797	2084	12.87	0.0006	
S	ource		DF	Type II	I SS	Mean Sq	uare	F Value	Pr > F	
			1	0.0000	0139 2084	0.0000	0139 2084	0.00 12 87	0.9936	
Dependent	Variable: FUNG	US	- WIT T	H DAC AS	COVARIA	BLE	11:03	3 Monday,	July 29,	2013
Dependent	10. 200200 10.00			Su	m of					
S	ource		DF	Squ	ares	Mean Sq	uare	F Value	Pr > F	
M	non		2	9 1767	3952 1018	0.0119	1976 9580	0.09	0.9144	
C	orrected Total		71	9.2005	5000	0.1525	5500			
		R-Square	Coeff	Var	Root M	SE FU	NGUS Mea	an		
		0.002591	96.6	0554	0.3646	86	0.37750	90		
S	ource		DF	Type	I SS	Mean Sa	uare	F Value	Pr ≻ F	
C	HIPPED		1	0.0014	2222	0.0014	2222	0.01	0.9179	
D	AC		1	0.0224	1730	0.0224	1730	0.17	0.6827	
S	ource		DF	Type II	I SS	Mean Sq	uare	F Value	Pr > F	
C	HIPPED		1	0.0014	2222 1730	0.0014	2222 1730	0.01	0.9179	
U.	AC		T	0.0224	1750	0.0224	1750	0.17	0.002/	
			TIW T	H DAC AS he GLM P	COVARIA rocedure	BLE	11:03	3 Monday,	July 29,	2013
Dependent	Variable: ROOT			c	m of					
ς	ource		DF	sui Sau	ares	Mean So	uare	F Value	Pr > F	
M	odel		2	4.2824	4830	2.1412	2415	1.96	0.1482	
E	rror		69	75.2514	3920	1.0906	0057			
C	orrected Total		71	79.5338	8750					
		R-Square	Coef	f Var	Root	MSE	ROOT Mea	an		

	0.053844	34.	85418	1.044	318	2.996250			
Source		DF	Туре	I SS	Mean Sq	uare F	Value	$\Pr > F$	
CHIPPE	D	1	0.0023	3472	0.0023	3472	0.00	0.9632	
DAC		1	4.2801	1358	4.2801	1358	3.92	0.0516	
Source		DE	Type IT	тсс	Moon Sa		Value		
CHTPPE	п	1	0 0023	3472	0 0023	141 E I 3472	0 00	0 9632	
DAC	5	1	4.2801	1358	4.2801	1358	3.92	0.0516	
		WIT	'H DAC AS	COVARIA	BLE	11:03	Monday,	July 29,	2013
		T	he GLM P	rocedure					
		Le	ast Squa	res Mean	S				
				FUN	GUS				
	CHIPPED	GERM LSM	1EAN	LSM	EAN I	ROOT LSME	AN		
	C	0.87583	333	0.38194	444	3.001944	44		
	NC	0.87611	.111	0.37305	556	2.990555	56		
						11.03	Monday	7u1v 20	2012
		T	The GLM P	rocedure		11.05	nonuay,	July 23,	2015
		Clas	s Level	Informat	ion				
	Class	L	evels	Values					
	POP		2	ΑT					
	TRIAL		10	1234	5678	9 10			
	CHIPPEI	D	2	C NC					
	Num	her of Oh	servatio	ns Read		72			
	Numl	ber of Ob	servatio	ns Used		72			
		WITHOUT	DAC AS C	OVARIABL	E + POP	11:03	Monday,	July 29,	2013
Dependent Vari	able: GERM	I	ne glm P	rocedure					
bependente vari			Sum	of					
Source		DF	Squ	ares	Mean Sq	uare F	Value	Pr ≻ F	
Model		2	0.5471	7146	0.2735	8573	15.32	<.0001	
Error		69	1.2321	6049	0.0178	5740			
Correc	ted Total	71	1.7793	3194					
	R-Square	Coef	f Var	Root	MSF	GERM Mean			
	it square	0001	i vai	NOOL					
	0.307515	15.	25523	0.133	632	0.875972			
Source		DE	Type	тсс	Maan Sa		Value	Dn \ E	
POP		1	0.5471	7007	0.5471	7007	30.64	<.0001	
CHIPPE	D	1	0.0000	0139	0.0000	0139	0.00	0.9930	
Source		DF	Type II	I SS	Mean Sq	uare F	Value	Pr > F	
POP	_	1	0.5471	7007	0.5471	7007	30.64	<.0001	
CHIPPE	D	1	0.0000	0139	0.0000	0139	0.00	0.9930	
		WITHOUT	DAC AS C	OVARIABL	E + POP	11:03	Monday,	July 29,	2013
		Т	he GLM P	rocedure					
Dependent Vari	able: FUNGUS		-	<i>c</i>					
C			Su	m ot	More C	-	\/ ~1	D	
Source		UF 2	5qu	ares 9785	riean Sq	uare F agao	137 0F	2 0001	
Frron		ے 69	1 8503	5215	0 0762	1670	101.00	1.0001	
Correc	ted Total	71	9.2005	5000	0.0200				
		-							
	R-Square	Coeff	[:] Var	Root M	SE FU	NGUS Mean			
	0.798887	43.3	7962	0.1637	58	0.3/7500			
Source		DF	Tvpe	I SS	Mean So	uare F	Value	Pr > F	
POP		1	7.3487	7562	7.3487	7562	274.04	<.0001	

	CHIPPED		1	0.0014	2222	0.001	42222	0.05	0.8185	
	Source		DF	Type II	I SS	Mean S	quare	F Value	Pr ≻ F	
	POP		1	7.3487	7562	7.348	77562	274.04	<.0001	
	CHIPPED		T	0.0014	2222	0.001	42222	0.05	0.8185	
			WITHOU	T DAC AS C	OVARIABL	E + POP	11:	03 Monday,	July 29,	2013
				The GLM P	rocedure	2				
Depender	nt Variable: RC	ЮТ								
				_						
	Source		DF	Sui Sau	m ot ares	Mean S	auare	F Value	Pr > F	
	Model		2	36.9239	5722	18.461	97861	29.90	<.0001	
	Error	.1	69	42.6099	3028	0.617	53522			
	Corrected lota	βŢ	/1	/9.5338	8750					
		R-Square	Co	eff Var	Root	MSE	ROOT M	ean		
		0.464254	2	6.22725	0.785	5834	2.996	250		
	Source		DF	Туре	I SS	Mean S	quare	F Value	Pr > F	
	POP		1	36.9216	2250	36.921	62250	59.79	<.0001	
	CHIPPED		1	0.0023	3472	0.002	33472	0.00	0.9511	
	Source		DF	Type II	I SS	Mean S	quare	F Value	Pr ≻ F	
	POP		1	36.9216	2250	36.921	62250	59.79	<.0001	
	CHIPPED		1	0.0023	3472	0.002	33472	0.00	0.9511	
			WITHOU	T DAC AS C The GLM P	OVARIABL rocedure	E + POP	11:	03 Monday,	July 29,	2013
				Least Squa	res Mear	IS				
					FUN	IGUS				
		CHIPPED	GERM L	SMEAN	LSM	1EAN	ROOT L	SMEAN		
		NC	0.885	57986 85764	0.34622	3681	3.082	61806		
			ытты				11.	02 Monday	2017 20	2012
			Cl	The GLM P ass Level	rocedure Informat	ion	11.	os monuay,	July 29,	2013
		Class			Values					
		POP		2	A T					
		ΤΡΤΛΙ		10	1 2 3 /	1567	8 9 10			
		CHIPPED)	2	C NC	+ 5 0 7	0 5 10			
		Numh	er of	Observatio	ns Read		72			
		Numb	per of	Observatio	ns Used		72			
			WITH	DAC AS CO	VARIABLE	+POP	11:	03 Monday,	July 29,	2013
Depender	nt Variable: GE	RM				-				
	Source		DF	Sum	of	Mean S	quare	F Value	Pr、F	
	Model		3	0.7677	6333	0.255	92111	17.20	<.0001	
	Error		68	1.0115	6861	0.014	87601			
	Corrected lota	аТ	/1	1.//93	3194					
		R-Square 0.431490	Co 1	eff Var 3.92364	Root 0.121	MSE 1967	GERM M 0.875	ean 972		
	Source		DF	Type	T 55	Mean S	quare	F Value	Pr > F	
	POP		1	0.5471	7007	0.547	17007	36.78	<.0001	
	CHIPPED		1	0.0000	0139	0.000	00139	0.00	0.9923	
	DAC		1	0.2205	9187	0.220	59187	14.83	0.0003	
	Source		DF	Type II	I SS	Mean S	quare	F Value	Pr > F	

POP		1	0.488	04110	0.48804	4110	32.81	<.0001	
CHIPPED		1	0.000	00139	0.0000	0139	0.00	0.9923	
DAC		1	0.220	59187	0.22059	9187	14.83	0.0003	
		WITH	DAC AS C	OVARIABL	E +POP	11:03	8 Monday,	July 29,	2013
			The GLM I	Procedur	e				
Dependent Variable: FUN	NGUS								
			Su	n of					
Source		DF	Squ	uares	Mean Squ	uare	F Value	Pr ≻ F	
Model		3	7.489	93972	2.49664	4657	99.25	<.0001	
Error		68	1.710	51028	0.02515	5603			
Corrected Tota.	L	71	9.200	55000					
	R-Square	Coef	f Var	Root		NGUS Mea	'n		
	0.814075	42.	01498	0.158	607	0.37750	0		
-			_						
Source		DF	Iype	1 55	Mean Squ	uare	F Value	$\Pr > F$	
		1	0 001	//502 12222	7.348/7	/502	292.13	<.0001 0 0120	
		1	0.0014	+2222 74188	0.00142	4444 1188	5 56	0.0120	
DAC		1	0.155	4100	0.1557-	+100	5.50	0.0215	
Source		DF	Type I	II SS	Mean Squ	uare	F Value	Pr ≻ F	
POP		1	7.466	10020	7.46616	3020	296.79	<.0001	
CHIPPED		1	0.0014	42222	0.00142	2222	0.06	0.8128	
DAC		1	0.139	74188	0.13974	4188	5.56	0.0213	
						11.07		71	2012
		WIIH	DAC AS CO	JVARIABL	E +POP	11:03	Monday,	July 29,	2013
			THE GLM I	rocedur	e				
Dependent Variable: ROO	т								
•			S	um of					
Source		DF	Squ	Jares	Mean Squ	uare	F Value	Pr > F	
Model		3	43.565	96472	14.52168	3824	27.45	<.0001	
Error		68	35.968	82278	0.52895	5328			
Corrected Tota.	L	71	79.533	88750					
	R-Square	Coe	ff Var	Root	MSE F		'n		
	0.547755	24	. 27340	0.72	7292	2,99625	60		
				01/2			•		
Source		DF	Туре	I SS	Mean Squ	uare	F Value	Pr ≻ F	
POP		1	36.921	52250	36.92162	2250	69.80	<.0001	
CHIPPED		1	0.002	33472	0.00233	3472	0.00	0.9472	
DAC		1	6.641	10750	6.64110	9750	12.56	0.0007	
Source			Type T	ττ ςς	Maan Ca	lane	E Value	Dn \ E	
POP		ог 1	39 282	51642	39 28261	1642	74 26	7 1 2 F	
CHTPPED		1	0.002	33472	0.0023	3472	0.00	0.9472	
DAC		1	6.641	10750	6.64110	0750	12.56	0.0007	
		WITH	DAC AS C	OVARIABL	E +POP	11:03	8 Monday,	July 29,	2013
			The GLM I	Procedur	e				
		L	east Squ	ares Mea	ns				
				FII	NGUS				
(CHIPPED	GERM LS	MEAN	LS	MEAN F	ROOT LSM	1EAN		
(-	0.8850	6944	0.3458	1944	3.08480	754		
١	NC	0.8853	4722	0.3369	3056	3.07341	.865		
		WITHOUT	DAC AS (COVARIAB	LE BY POP	11:03	8 Monday,	July 29,	2013
			POI	P=A					
			The GLM I	Procedur	e				
		Cla	ss Level	Informa	tion				
	Clas	55	Level	s Val	ues				
	TRIA	AL.	1	3 12	34567	78			

	СН	IIPPED	2	C NC	2			
	Nu Nu	mber of mber of	Observation Observation	ns Read ns Used		32 32		
		WITHO	JT DAC AS CO	OVARIABL	E BY PO	P 11:0	3 Monday,	July 29,
			POP:	=A				
Dependent Vanishl			The GLM P	rocedure	2			
Dependent variable	E: GERM		Su	n of				
Source		DF	Squa	ares	Mean S	quare	F Value	Pr > F
Model		1	0.00340	0313	0.003	40313	1.91	0.1766
Corrected	Total	31	0.0557	2187	0.001	///29		
	R-Squar	e C	oeff Var	Root	MSE	GERM Me	an	
	0.05999	7	4.330831	0.042	158	0.9734	38	
Source		DF	Туре 1	I SS	Mean S	quare	F Value	Pr > F
CHIPPED		1	0.00340	0313	0.003	40313	1.91	0.1766
Source		DF	Type II	ISS	Mean S	quare	F Value	Pr > F
CHIPPED		L			0.005	+0515	1.91	2.1/00
		WITHO	JI DAC AS CO	JVARIABL	E BY PO	5 11:0	3 Monday,	July 29,
			POP:	=A				
			The GLM P	rocedure	5			
Dependent Variable	: FUNGUS							
_			Sur	n of			.	
Source Model		DF 1	Squa A AAAA	ares	Mean S	quare	F Value	Pr > F
Error		30	0.0484	5875	0.001	51563	0.02	0.0555
Corrected	Total	31	0.0484	9688				
	R-Square	Co	eff Var	Root M	ISE F	JNGUS Me	an	
	0.000580	1	97.8823	0.0401	.95	0.0203	13	
Source		DE	Type	τςς	Mean S	auare	E Value	Dr \ F
CHIPPED		1	0.0000	2812	0.000	02812	0.02	0.8959
Source		DF	Type II:	I SS	Mean S	quare	F Value	Pr ≻ F
CHIPPED		1	0.0000	2813	0.000	02813	0.02	0.8959
		WITHO	JT DAC AS CO	OVARIABL	E BY PO	P 11:0	3 Monday,	July 29,
			POP:	=A				
Dependent Variable	e: ROOT		The GLM P	rocedure	5			
			Sum	of				
Source		DF	Squa	ares	Mean S	quare	F Value	Pr > F
Fron		T DZ	0.1568 13 157/9	0000 8750	0.120	58292 58292	0.36	0.5544
Corrected	Total	31	13.3142	8750	0.430	56252		
	R-Squar 0.01177	e C	oeff Var 17.44213	Root 0.662	MSE 256	ROOT Me 3.7968	an 75	
Source		DF	Type	I SS	Mean S	guare	F Value	Pr > F

Source CHTPPED	DF 1	DF Type III SS 1 0.15680000			re FValue 00 0.36	Pr > F 0.5544			
0.121 1 22	-				44.02.44	- 1 - 20	2042		
	WITHOUT	DAC AS C	OVARIABLI	E BY POP	11:03 Monday,	July 29,	2013		
		POF	A						
	L	east Squa	res Means	5					
FUNGUS CHIPPED GERM LSMEAN LSMEAN ROOT LSMEAN									
C	0.9631								
NC	0.9837	0.98375000 0.01937500 3.72687500							
	WITHOUT	DAC AS C	OVARIABLE	E BY POP	11:03 Monday,	July 29,	2013		
		POF	'=T						
	<u>(</u>]-	The GLM P	rocedure						
Clas	S CIA	Levels	Values	LOU					
TRIA	L	10	1234	56789	10				
CHIP	PED	2	C NC						
N	umber of O	bservatic	ns Read	4	0				
N	umber of O	bservatio	ns Used	4	0				
	WITHOUT	DAC AS C	OVARIABLE	E BY POP	11:03 Monday,	July 29,	2013		
		POP	'=T						
Dependent Variable: GERM		The GLM F	rocedure						
		Su	ım of						
Source	DF	Squ	ares	Mean Squa	re F Value	Pr > F			
Error	38	1.1728	8000	0.002560	26	0.7749			
Corrected Total	39	1.1754	4000						
R-Square Coeff Var Root MSE GERM Mean									
0.0021	78 22	.01568	0.1756	685 0	.798000				
Source	DF	Туре	I SS	Mean Squa	re F Value	Pr ≻ F			
CHIPPED	1	0.0025	6000	0.002560	00 0.08	0.7749			
					_				
Source CHTPPED	DF 1	Type II 0 0025	I SS 6000	Mean Squa	re FValue 00 008	Pr > F 0 7749			
	-	0.0025		0.002300	0.00	017715			
	WITHOUT	DAC AS C	OVARIABLE	E BY POP	11:03 Monday,	July 29,	2013		
		The GLM P	rocedure						
Dependent Variable: FUNGUS		C,	of						
Source	DF	Sau	ares	Mean Squa	re F Value	Pr ≻ F			
Model	1	0.0021	.0250	0.002102	50 0.04	0.8343			
Error	38	1.8011	7500	0.047399	34				
Corrected Total	39	1.8032	7750						
R-Squar	e Coef	f Var	Root MS	SE FUNG	US Mean				
0.001166 32.82531 0.217714 0.663250									
Source	DF	Type	I SS	Mean Squa	re F Value	Pr > F			
CHIPPED	1	0.0021	0250	0.002102	50 0.04	0.8343			
Source	DF	Type II	I SS	Mean Squa	re F Value	Pr > F			
CHIPPED	1	0.0021	0250	0.002102	50 0.04	0.8343			
	WITHOUT	DAC AS C	OVARIABI	E BY POP	11:03 Monday.	Julv 29.	2013		
		POF	P=T						

The GLM Procedure											
Dependent variable: KOOT		Sum	of								
Source	DF	Squa	ires Mea	in Square	F Value	Pr > F					
Model	1	0.08372	250 0.	08372250	0.11	0.7432					
Error	38	29.21425	500 0.	76879618							
Corrected Total	39	29.29797	750								
	R-Square	Coeff Var	Root MSE	ROOT	Mean						
	0.002858	37.22000	0.876810	2.35	5750						
Source	DF	Туре І	SS Mea	in Square	F Value	Pr > F					
CHIPPED	1	0.08372	250 0.	08372250	0.11	0.7432					
Source	DF	Type III	SS Mea	in Square	F Value	Pr > F					
CHIPPED	1	0.08372	250 0.	08372250	0.11	0.7432					
	WITH	OUT DAC AS CO	VARIABLE BY	′ POP 11	:03 Monday,	July 29,	2013				
POP=T The GLM Procedure											
Least Squares Means											
CHI	FUNGUS CHIPPED GERM LSMEAN LSMEAN ROOT LSMEAN										
C	0.8	0600000	0 67050000	2 31	000000						
NC 0.7900000 0.6560000 2.40150000											
WITH DAC AS COVARIABLE BY POP 11:03 Monday, July 29, 2013											
POP=A											
	The GLM Procedure										
Class Levels Values											
TRIAL 8 1 2 3 6 7 8 CHIPPED 2 C NC 2 C NC 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 <											
		-									
	Number o Number o	f Observation f Observation	is Read is Used	32 32							
	WIT	H DAC AS COVA	RIABLE BY P	POP 11	:03 Monday,	July 29,	2013				
		POP=	A								
Dependent Variable: GERM		The GLM Pr	oceaure								
·	55	Sum	of	~	- 1/ 1						
Source Model	DF 2	Squa 0 00392	ires Mea 1875 0	00196438	F Value	Pr > F 0 3532					
Error	29	0.05279	0312 0.	00182045	1.00	010002					
Corrected Total	31	0.05672	187								
	R-Square	Coeff Var	Root MSE	GERM	Mean						
	0.069263	4.383102	0.042667	0.97	'3438						
Source	DF	Туре І	SS Mea	in Square	F Value	Pr > F					
CHIPPED	1	0.00340	0313 0.	00340313	1.87	0.1821					
DAC	1	0.00052	.00 200	00052563	0.29	0.5951					
Source	DF	Type III	SS Mea	in Square	F Value	Pr > F					
CHIPPED DAC	1	0.00340 0 00057	1313 0. 1563 р	00340313	1.87 0 29	0.1821 0 5951					
	1	0.00002		55652505	0.29	0.5551					
	WIT	H DAC AS COVA	RIABLE BY P	OP 11	:03 Monday,	July 29,	2013				

			POI	P=A					
			The GLM P	rocedure	2				
Dependent Variable: FU	NGUS		THE GENTI	occuurt	-				
			Si	um of					
Source		DF	Squ	uares	Mean S	Square	F Value	Pr > F	
Model		2	0.000	55375	0.000	27687	0.17	0.8466	
Error	1	29	0.04/9	94313	0.001	165321			
Corrected Tota.	L	31	0.0484	49688					
	R-Square	Coe	eff Var	Root	MSE F	UNGUS	Mean		
	0.011418	26	00.1708	0.040	9660	0.02	0313		
Source		DF	Туре	I SS	Mean S	quare	F Value	Pr ≻ F	
CHIPPED		1	0.000	02812	0.000	02812	0.02	0.8971	
DAC		1	0.000	52563	0.000	952563	0.32	0.5772	
Sourco		DE	Tupo T	TT CC	Moon	auana	E Value	Dn \ E	
CHTPPED		0F 1		11 33 82813		102813	F Vaiue	0 8971	
DAC		1	0.000	52563	0.000	02013	0.32	0.5772	
5710		-					0101	010772	
		WITH	DAC AS CO	VARIABLE	E BY POP	11	:03 Monday,	July 29,	2013
			POI	P=A					
			The GLM I	Procedu	re				
Dependent Variable: ROO	וכ		5	um of					
Source		DE	Sai	um OI Jares	Mean 9	Square	F Value	Pr > F	
Model		2	1 9293	21000	0 96Z	160500	2 46	0 1033	
Frror		29	11.3850	27750	0.392	58888	2.40	0.1055	
Corrected Total	1	31	13.3142	28750	01001				
R-Square Coeff Var Root MSE ROOT Mea							Mean		
	0.144898	1	16.50223	0.62	26569	3.79	6875		
Source		DF	Type	T SS	Mean 9	Square	F Value	Pr ≻ F	
CHIPPED		1	0.1568	80000	0.156	580000	0.40	0.5324	
DAC		1	1.7724	41000	1.772	241000	4.51	0.0423	
Source		DF	Type I	II SS	Mean S	Square	F Value	Pr > F	
CHIPPED		1	0.1568	80000	0.156	80000	0.40	0.5324	
DAC		1	1.7724	41000	1.772	241000	4.51	0.0423	
		WITH	DAC AS CO	VARIABLE	E BY POP	11	:03 Monday,	July 29,	2013
			The GIM I	P=A· Procedur	 na				
			Least Squa	ares Mea	ans				
				Fl	JNGUS				
CHIPPED GERM LSMEAN LSMEAN ROOT LSMEAN									
(0.963	312500	0.0212	25000	3.86	687500			
1	NC	0.983	375000	0.0193	37500	3.72	687500		
WITH DAC AS COVARIABLE BY POP 11:03 Monday, July 29, 2013									
POP=T									
Class Level Information									
	Class	C.	Levels	Value	5				
	TRIAL		10	123	4567	8 9 10)		
CHIPPED 2 C NC									
	Numb	er of	Observatio	ons Read	t	40			
	Numb	er of	Ubservatio	ons Used	L L	40			
		WITH	DAC AS CO	VARIABLE	E BY POP	11	:03 Monday,	July 29,	2013
The GLM Procedure									

Dependent Variable: GERM

				Su	um of					
	Source		DF		Jares	Mean So	quare	F Value	Pr > F	
	Model		2 0.3		36125	0.1763	18063	7.92	0.0014	
	Error		37	0.8230	07875	0.02224537				
	Corrected Total		39 1.17		.7544000					
		R-Square	Coeff Var		Root MSE		GERM N	lean		
		0.299770	18.69033		0.149149		0.798	3000		
	Source		DF	Type	I SS	Mean So	auare	F Value	Pr ≻ F	
	CHIPPED		1	0.002	56000	0.002	56000	0.12	0.7364	
	DAC		1	0.3498	30125	0.3498	80125	15.72	0.0003	
	Source		DF	Type II	II SS	Mean So	quare	F Value	Pr ≻ F	
	CHIPPED		1	0.0025	56000	0.0025	56000	0.12	0.7364	
	DAC		1	0.3498	30125	0.3498	80125	15.72	0.0003	
			WITH D	AC AS CO	/ARIABL	E BY POP	11:	:03 Monday,	July 29,	2013
				The GLM F	Procedui	re				
Depender	nt Variable: FUN	IGUS		-						
	Source			Su	um ot	Maar C		E Val	Do t	
	Source		DF 2	Sql 0 1071	Jares	Mean So	quare	F Value	Pr > F 0 1175	
	Frron		37	1 6061	1/1375	0.098	10000	2.27	0.11/5	
	Corrected Total		39	1 8032	27750	0.045	+0929			
			55	1.0051						
		R-Square	Coef	f Var	Root	MSE FL	JNGUS N	lean		
		0.109320	31.	41334	0.208	3349	0.663	3250		
	Source		DF	Type	I SS	Mean So	quare	F Value	Pr > F	
	CHIPPED		1	0.0021	10250	0.0022	10250	0.05	0.8270	
	DAC		1	0.1950	93125	0.1950	03125	4.49	0.0408	
	Source		DF	Type II	II SS	Mean So	Juare	F Value	Pr ≻ F	
	CHIPPED		1	0.0021	10250	0.0021	10250	0.05	0.8270	
	DAC		1	0.1950	93125	0.1950	03125	4.49	0.0408	
			WITH D	AC AS CO	ARIABLI	E BY POP	11:	:03 Monday,	July 29,	2013
				The GLM F	P=1 Procedui	re				
Depender	nt Variable: ROC	т				-				
				Su	um of			_		
	Source		DF	Squ	uares	Mean So	quare	F Value	Pr > F	
	Model		2	4.9891	17375	2.494	58687	3.80	0.0316	
	Error		37	24.3088	30375	0.6569	99470			
	Corrected Total		39	29.2979	97750					
		R-Square	Coe	ff Var	Root	t MSE	ROOT N	lean		
		0.170291	34	.40739	0.83	10552	2.355	5750		
	Source		DF	Туре	I SS	Mean So	quare	F Value	Pr > F	
	CHIPPED		1	0.0837	72250	0.0837	72250	0.13	0.7231	
	DAC		1	4.9054	45125	4.9054	45125	7.47	0.0096	
	Source		DF	Type T	II SS	Mean So	guare	F Value	Pr > F	
	CHIPPED		1	0.0837	72250	0.0837	72250	0.13	0.7231	
	DAC		1	4.9054	45125	4.9054	45125	7.47	0.0096	
							11	02 Mandau	71	2012
			wiih D	AL AS COV	VAKIABLI P=T	- ВҮ РОР	11:	.03 Monday,	JULY 29,	2013
				The GLM F	Procedui	re				
			L	east Squa	ares Mea	ans				
					FI	JNGUS				
	C	HIPPED	GERM LS	MEAN	LS	5MEAN	ROOT L	SMEAN		
	C		0.80600000		0.670	7050000		00000		

NC 0.7900000 0.65600000 2.40150000