Confronting the Global Agricultural Crisis of the 21st Century

World Food Prize, Des Moines, Iowa, October 15, 2008

Gordon Conway
Chief Scientific Adviser, Department for International Development, UK
Professor of International Development, Imperial College
The Global Crises

- Financial
- Terrorism
- Food security
- Energy Supply
- Health Equity
- Environmental Degradation
- Climate Change
An English Cottage Loaf

Immediate Crisis on Top

Chronic Crisis beneath
Grain stocks were falling rapidly
Partly due to falling production
Biofuel demand was growing rapidly

A third of US maize crop to Ethanol,
a third of EU rapeseed to Biodiesel
As were oil prices

With knock effects for Fertilizer Prices

1. Derived from Green Markets. 2. Derived from FMB Weekly.

FOB = free on board (average price, with buyer paying freight and insurance, to destination port). DAP = diammonium phosphate. MOP = muriate of potash.
The Costs of Fertiliser Production
Making Phosphates

1 Ton Sulfur Produces ~ 2 ton of DAP

How do we make fertilisers cheaper and more accessible?
The Food Crisis has created 100-150 million more hungry people.
Adding to the:

- Over 850 million chronically undernourished
- 180 million children severely underweight for their age
- 400 million women of child bearing age anemic
- Over 200 million children vitamin A deficient
Underlying the spike is a chronic crisis which is getting worse.

The Drivers
- Rising populations
- Rising per capita incomes
- Growing demand for livestock products
- Growing demand for biofuels
- Increasing water and land scarcity
- Impact of climate change
- Slowing of productivity increases
How do we cope with the pressure on the Land?

- For food and feed crops
- For biofuel
- For industry and urbanisation
- For forestry
- For pasture and range
- For ecosystem services

- Is there enough?
- Will the poor benefit?
- How can we manage market forces to get an equitable and sustainable solution?
How do we:
greatly improve livestock conversion efficiencies?
reduce Greenhouse gas emissions from livestock rearing?
The Biofuel Crop Dilemmas

• Why are we growing them?
 – Energy security
 – Farmer income
 – Carbon reduction

• We need to be explicit

• We need to carefully analyse the full costs and benefits for each crop in each location
Assessing a biofuel

- Is it profitable?
- Is it cheap?
- Is it environmentally friendly?
- Is it socially acceptable?
- Does growing it benefit the poor?
- Factoring in all the inputs and land use changes, is it carbon neutral or better?
How quickly can we move to 2nd and 3rd generation biofuels?

<table>
<thead>
<tr>
<th>ETHANOL</th>
<th>litres per ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>3,500</td>
</tr>
<tr>
<td>Sugar cane</td>
<td>6,200</td>
</tr>
<tr>
<td>Switchgrass</td>
<td>10,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIODIESEL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>172</td>
</tr>
<tr>
<td>Soy</td>
<td>450</td>
</tr>
<tr>
<td>Canola</td>
<td>1,200</td>
</tr>
<tr>
<td>Jatropha</td>
<td>1,900</td>
</tr>
<tr>
<td>Oil palm</td>
<td>6,000</td>
</tr>
<tr>
<td>Algae</td>
<td>90,000</td>
</tr>
</tbody>
</table>
Average Cereal Yields

(FAO 2006)
We need to boost Public Agricultural R&D

Source: IFPRI

Average annual growth (percent per year)

- Asia-Pacific
- Latin America and the Caribbean
- Sub-Saharan Africa
- Developing countries
- High-income countries

Source: IFPRI)
If food prices are high why can’t Developing Country farmers respond?

- Lack of inputs
- High costs of fertilisers
- Inappropriate technologies
- Poor land tenure
- Lack of water
- Poor extension
- Variable and unreliable markets
- Poor infrastructure
- etc

- But the mix varies from place to place
- We urgently need new diagnostics, country by country, state by state
The Way Forward
Doubly Green Revolution

• The aim
 • repeat the success of the Green Revolution
 • on a global scale
 • in many diverse localities

• and be
 • equitable
 • sustainable
 • and environmentally friendly
How do we achieve this given current realities?

- Bio-physical inputs
 - Costs of fertilizers, pesticides and water

- Ecological/Agronomic technologies
 - Skills and labour

- Build into the seed
 - Controversies over biotechnology
Deep Placement of USG briquettes in paddy
Controlling Striga

- 2.4 m ha
- $380m loss
- Maize resistant to Imazapyr
- Coat seed, herbicide kills Striga
- BASF, Weismann. CIMMYT, IITA, NARS, NGOs
What is the real potential for increased large-scale irrigation in Africa?
Treadle pump and drip irrigation – are these the alternatives?
Ecological/ Agronomic Approaches
Wamalwa Farm, Siritanyi FFS, Kanduyi. Maize-groundnut intercrop providing 5330 kg maize and 1203 kg groundnut per ha. These results indicate that MBILI can produce significant food surpluses.

Rasike Farm, Chililila WG. MBILI maize-soyabean intercrop providing 1215 kg maize and 545 kg soyabean per ha when conventional intercrops failed. These results indicate that MBILI is a means toward greater food security.
Controlling Striga using Desmodium
Building Sustainability into the Seed (or the animal)

- Increasing nutrient uptake efficiency
- Improving nutritive value
- Countering the new pest and disease outbreaks
- Increasing drought tolerance
Marker- Aided Selection

- Locating and tagging the genes for drought tolerance
Recombinant DNA or ‘GM’ Crops

GLOBAL AREA OF BIOTECH CROPS
Million Hectares (1996-2007)

Increase of 12%, 12.3 million hectares (30 million acres), between 2006 and 2007.
Source: Clive James, 2007.
Diamond Back Moth

Source: CIMBAA
How do we judge an technology is appropriate?

- Does it work?
- Is it value for money?
- Is it sustainable?
- Is it equitable?
- Are there downsides?
- What is the counterfactual?
But technologies are never enough

The context is crucial

How do we scale up?
One solution is Layered Interventions
e.g. Western Kenya

- New hybrid maizes
- Agro-dealers
- Local fertilisers
- Cereal Banks
- Markets
- Market information
Agrodealers
Output Markets
Cereal Bank in Western Kenya
We also need to build Regional Markets

- World Food Program

- Purchase for Progress
 - Stable and accessible market for small farmers
 - 5 year pilot – 350,000 farmers
And to build participation in High-Value Agricultural Markets

- IPRI Studies
 - Pigs in Vietnam
 - Horticulture in China

- Higher Household Income for Small Farmers under Contract farming
 - More productive use of labour and land
 - Reduction in production and market risks
 - Reduction in transaction costs for inputs and outputs

Source: IFPRI 2007-2008 Annual Report
Loess Plateau
China
Loess Plateau, China
Rwanda
Bourbon Coffee

Getting the Quality Control right
Ghana’s Success Story

- MDG 1 achieved
- Malnourished - 5.8m in 1993 to 2.7 m in 2003.
- Declines in % underweight children and mortality
- Strong agricultural growth since 80s
- 25% increase due to area expansion
- Maize yield up by 36%, cassava by 50%
- New maize, yam, rice and cassava varieties
- A pest resistant cassava.
- Strong growth in smallholder cocoa & pineapples
- Market liberalisation
- New rural infrastructure

Sources: Development Outreach, October, 08; Coulombe & Wodon, World Bank; Irish Hunger Report
All this is threatened by Climate Change

- Higher temperatures
- Greater & more intense rainfall
- Greater droughts
- River bank erosion
- Rising sea levels
- More intense cyclones
- Salt water incursions
Temperature and rainfall projections, 1980 to 1999 versus 2080 to 2099

scenario A1B
Drought in Africa between now and 2090

Red, Orange = More prone to drought

Blue = Wetter and less prone to drought

Hadley Centre, Met Office, UK
Combating the stress of Increasing Drought

- Drought tolerant varieties and breeds
- Drought tolerant cropping and farming systems
- Small-scale sustainable water supplies
Crop Biodiversity

The Seed Vault at Svalbard
Global Crop Diversity Trust
Separate Niches

Source: Naylor R. and Battisti D. 2008 (pers comm)
Conservation Farming in Zimbabwe
Ploughed

3 years
Minimum Tillage
Adaptation measures in Ningxia

Drought:

Farmer level

- Plastic film
- Change to plant other crops
- Cover small stone
- Terrace
- Saving water irrigation
- Water cellar

......
In many places droughts and floods will occur with greater frequency and intensity.

How do we build Resilience?
The International Architecture

Global Partnership for Agriculture & Food

- FAO
- WFP
- IFAD
- CGIAR
- NGOs
- Foundations
- Partner Countries
- The Banks
- Private Sector
- Bilateral Donors

Foundations
The Lewes Pound