Confronting the Global Agricultural Crisis of the 21st Century

World Food Prize, Des Moines, Iowa, October 15, 2008

Gordon Conway
Chief Scientific Adviser, Department for International
Development, UK
Professor of International Development, Imperial College

The Global Crises

Financial

Terrorism

Food security

Energy Supply

Health Equity

Environmental Degradation

Climate Change

An English Cottage Loaf

Immediate Crisis on Top

Chronic Crisis beneath

FAO Food Price Index

Grain stocks were falling rapidly

Surging Prices Highly Correlated To Exporter Ending Stocks

■ Ending Stocks for 4 Key Exporters: Australia, Canada, EU-27, United States

→ HRW POB Price

http://www.fas.usda.gov/ grain/circular/2008/02-08/graintoc.asp

Partly due to falling production

Biofuel demand was growing rapidly

Global biofuel production tripled between 2000 and 2007

Source: International Energy Agency; FO Licht.

A third of US maize crop to Ethanol, a third of EU rapeseed to Biodiesel

As were oil prices

Source: Trostle, Ronald, Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices, ERS, USDA, May 2008.

With knock effects for Fertilizer Prices

FOB = free on board (average price, with buyer paying freight and insurance, to destination port). DAP = diammonium phosphate. MOP = muriate of potash.

The Costs of Fertiliser Production Making Phosphates

1 Ton Sulfur Produces ~ 2 ton of DAP

How do we make fertilisers cheaper and more accessible?

The Food Crisis has created 100 -150 million more hungry people

Adding to the:

- Over 850 million chronically undernourished
- 180 million children severely underweight for their age
- 400 million women of child bearing age anemic
- Over 200 million children vitamin A deficient

Underlying the spike is a chronic crisis which is getting worse

- The Drivers
 - Rising populations
 - Rising per capita incomes
 - Growing demand for livestock products
 - Growing demand for biofuels
 - Increasing water and land scarcity
 - Impact of climate change
 - Slowing of productivity increases

How do we cope with the pressure on the Land?

- For food and feed crops
- For biofuel
- For industry and urbanisation
- For forestry
- For pasture and range
- For ecosystem services
- Is there enough?
- Will the poor benefit?
- How can we manage market forces to get an equitable and sustainable solution?

Meat Consumption

How do we: greatly improve livestock conversion efficiencies? reduce Greenhouse gas emissions from livestock rearing?

The Biofuel Crop Dilemmas

- Why are we growing them?
 - Energy security
 - Farmer income
 - Carbon reduction

We need to be explicit

 We need to carefully analyse the full costs and benefits for each crop in each location

Assessing a biofuel

- Is it profitable?
- Is it cheap?
- Is it environmentally friendly?
- Is it socially acceptable?
- Does growing it benefit the poor?
- Factoring in all the inputs and land use changes, is it carbon neutral or better?

How quickly can we move to 2nd and 3rd generation biofuels? litres per ha

ETHANOL

Ma		500

- Sugar cane 6,200
- Switchgrass 10,000

BIODIESEL

		_	
Ma		1 /	2

- Soy 450
- Canola 1,200
- Jatropha 1,900
- Oil palm 6,000
- Algae 90,000

Average Cereal Yields

We need to boost Public Agricultural R&D

Source: IFPRI)

If food prices are high why can't Developing Country farmers respond?

- Lack of inputs
- High costs of fertilisers
- Inappropriate technologies
- Poor land tenure
- Lack of water
- Poor extension
- Variable and unreliable markets
- Poor infrastructure
- etc
- But the mix varies from place to place
- We urgently need new diagnostics, country by country, state by state

The Way Forward

Doubly Green Revolution

- The aim
 - repeat the success of the Green Revolution
 - on a global scale
 - in many diverse localities
- and be
 - equitable
 - sustainable
 - and environmentally friendly

How do we achieve this given current realities?

- Bio-physical inputs
 - Costs of fertilizers, pesticides and water

- Ecological/Agronomic technologies
 - -Skills and labour

- Build into the seed
 - Controversies over biotechnology

Deep Placement of USG briquettes in paddy

Controlling Striga

- 2.4 m ha
- \$380m loss
- Maize resistant to Imazapyr
- Coat seed, herbicide kills
 Striga
- BASF, Weismann.
 CIMMYT, IITA,
 NARS, NGOs

Area under irrigation

What is the real potential for increased large-scale irrigation in Africa?

Treadle pump and drip irrigation – are these the alternatives?

Ecological/ Agronomic Approaches

Controlling Striga using Desmodium

Building Sustainability into the Seed (or the animal)

- Increasing nutrient uptake efficiency
- Improving nutritive value
- Countering the new pest and disease outbreaks
- Increasing drought tolerance

The New Rices for Africa

Monty Jones 2004

Marker- Aided Selection

 Locating and tagging the genes for drought tolerance

Recombinant DNA or 'GM' Crops

Uganda

Diamond Back Moth

Source: CIMBAA

How do we judge an technology is appropriate?

- Does it work?
- Is it value for money?
- Is it sustainable?
- Is it equitable?
- Are there downsides?
- What is the counterfactual?

But technologies are never enough

The context is crucial

How do we scale up?

One solution is Layered Interventions e.g. Western Kenya

- New hybrid maizes
- Agro-dealers
- Local fertilisers
- Cereal Banks
- Markets
- Market information

Agrodealers

Output Markets Cereal Bank in Western Kenya

We also need to build Regional Markets

World Food Program

- Purchase for Progress
 - -Stable and accessible market for small farmers
 - -5 year pilot 350,000 farmers

And to build participation in High-Value Agricultural Markets

- IPRI Studies
 - Pigs in Vietnam
 - Horticulture in China
- Higher Household Income for Small Farmers under Contract farming
 - More productive use of labour and land
 - Reduction in production and market risks
 - Reduction in transaction costs for inputs and outputs

Source: IFPRI 2007-2008 Annual Report

Loess Plateau China

Loess Plateau, China

Rwanda

Bourbon Coffee

Getting the Quality Control right

Ghana's Success Story

Sources: Development Outreach, October, 08; Coulombe & Wodon, World Bank; Irish Hunger Report

- MDG 1 achieved
- Malnourished 5.8m in 1993 to 2.7 m in 2003.
- Declines in % underweight children and mortality
- Strong agricultural growth since 80s
- 25% increase due to area expansion
- Maize yield up by 36%, cassava by 50%
- New maize, yam, rice and cassava varieties
- A pest resistant cassava.
- Strong growth in smallholder cocoa & pineapples
- Market liberalisation
- New rural infrastructure

All this is threatened by Climate Change

- Higher temperatures
- Greater & more intense rainfall
- Greater droughts
- River bank erosion
- Rising sea levels
- More intense cyclones
- Salt water incursions

Temperature and rainfall projections, 1980 to 1999 versus 2080 to 2099

scenario A1B

Drought in Africa between now and 2090

Red, Orange =

More prone to drought

Blue =

Wetter and less prone to drought

Combating the stress of Increasing Drought

Drought tolerant varieties and breeds

Drought tolerant cropping and farming systems

 Small-scale sustainable water supplies

Crop Biodiversity

The Seed Vault at Svalbard Global Crop Diversity Trust

Separate Niches

Source: Global Biodiversity Trust

Conservation Farming in Zimbabwe

Ploughed

3 years Minimum Tillage

Adaptation measures in Ningxia

- **# Drought:**
 - **# Farmer level**
 - **# Plastic film**
 - **Change to plant other crops**
 - **Cover small stone**
 - **#** Terrace
 - **Saving water irrigation**
 - **Water cellar**
 - **.....**

In many places droughts and floods will occur with greater frequency and intensity

How do we build Resilience?

The International Architecture

FAO

WFP

CGIAR

IFAD

NGOs

Global Partnership for Agriculture & Food

The Banks

Foundations

Private Sector

Partner Countries

Bilateral Donors

The Lewes Pound

